20.已知0<a<1,k≠0,函數(shù)f(x)=$\left\{{\begin{array}{l}{{a^x},x≥0}\\{kx+1,x<0}\end{array}}$,若函數(shù)g(x)=f(x)-k有兩個零點(diǎn),則實(shí)數(shù)k的取值范圍是(0,1).

分析 畫出分段函數(shù)的圖象,數(shù)形結(jié)合得答案.

解答 解:由分段函數(shù)f(x)=$\left\{{\begin{array}{l}{{a^x},x≥0}\\{kx+1,x<0}\end{array}}$,
由y=f(x)-k=0,
得f(x)=k.
令y=k與y=f(x),
作出函數(shù)y=k與y=f(x)的圖象如圖:

由圖可知,函數(shù)y=f(x)-k有且只有兩個零點(diǎn),則實(shí)數(shù)k的取值范圍是(0,1).
故答案為:(0,1).

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,考查函數(shù)零點(diǎn)的判斷,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某工廠要建造一個長方形無蓋蓄水池,其容積為4800m3,深為3m.如果池底每平方米的造價為120元,池壁每平方米的造價為150元,怎么設(shè)計水池能使總造價最低?最低總造價為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.命題“?x0∈R,sinx0+2x02>cosx0”的否定為?x∈R,sinx+2x2≤cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=-$\frac{{x}^{2}+4x+7}{x+1}$,g(x)=log3x+3x(x≤1),實(shí)數(shù)a,b滿足a<b<-1,若?x1∈[a,b],?x2∈(0,+∞),使得f(x1)=g(x2)成立,則b-a的最大值為( 。
A.4B.2$\sqrt{3}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=$\frac{{{{log}_2}({3-x})}}{{\sqrt{{x^2}-1}}}$的定義域?yàn)椋?∞,-1)∪(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.橢圓$\frac{y^2}{3}$+$\frac{x^2}{2}$=1的焦點(diǎn)坐標(biāo)為(0,-1),(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若復(fù)數(shù)z滿足($\overline{z}$+i)(1+i)=2,則z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.將圓x2+y2=1上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?倍得到曲線C.
(1)寫出曲線C的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}}$)=2$\sqrt{2}$,若P,Q分別為曲線C和直線l上的一點(diǎn),求P,Q的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$\frac{sinα-cosα}{sinα+cosα}$=$\frac{1}{2}$,則tan2α的值為( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.-$\frac{3}{4}$D.3

查看答案和解析>>

同步練習(xí)冊答案