8.函數(shù)y=loga(x+2)+2的圖象過(guò)定點(diǎn)(-1,2).

分析 根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),求出定點(diǎn)的坐標(biāo)即可.

解答 解:令x+2=1,解得:x=-1,
此時(shí)y=2,
故函數(shù)過(guò)(-1,2),
故答案為:(-1,2).

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在(1+x+x2n=Dn0+Dn1x+Dn2x2+…+Dnrxr+…+Dn2n-1x2n-1+Dn2nx2n的展開(kāi)式中,把Dn0,Dn1,Dn2,…,Dn2n叫做三項(xiàng)式系數(shù).
(1)當(dāng)n=2時(shí),寫(xiě)出三項(xiàng)式系數(shù)D20,D21,D22,D23,D24的值;
(2)類比二項(xiàng)式系數(shù)性質(zhì)Cn+1m=Cnm-1+Cnm(1≤m≤n,m∈N,n∈N),給出一個(gè)關(guān)于三項(xiàng)式系數(shù)Dn+1m+1(1≤m≤2n-1,m∈N,n∈N)的相似性質(zhì),并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在公差為3的等差數(shù)列{an}中,a5+a6=7,則a6+a8的值為( 。
A.13B.16C.19D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=45,且a3,a5,a9恰為等比數(shù)列{bn}的前三項(xiàng),記cn=(bn-am)(bn+1-am).
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若m=17,求cn取得最小值時(shí)n的值;
(3)當(dāng)c1為數(shù)列{cn}的最小項(xiàng)時(shí),m有相應(yīng)的可取值,我們把所有am的和記為A1;…;當(dāng)ci為數(shù)列{cn}的最小項(xiàng)時(shí),m有相應(yīng)的可取值,我們把所有am的和記為Ai;…,令Tn=A1+A2+…An,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)=ex-ax2,g(x)是f(x)的導(dǎo)函數(shù).
(I )求g(x)的極值;
(II)證明:對(duì)任意實(shí)數(shù)x∈R,都有f′(x)≥x-2ax+1恒成立:
(Ⅲ)若f(x)≥x+1在x≥0時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)Tn是數(shù)列{an}的前n項(xiàng)之積,并滿足:Tn=1-an(n∈N*).
(Ⅰ)求a1,a2,a3
(Ⅱ)證明數(shù)列{$\frac{1}{{T}_{n}}$}等差數(shù)列;
(Ⅲ)令bn=$\frac{{a}_{n}}{{n}^{2}+n}$,證明{bn}前n項(xiàng)和Sn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸長(zhǎng)為2$\sqrt{2}$,左焦點(diǎn)F(-1,0),若過(guò)點(diǎn)B(-2b,0)的直線與橢圓交于M,N兩點(diǎn).
(1)求橢圓G的標(biāo)準(zhǔn)方程;
(2)求證:∠MFB+∠NFB=π;
(3)求△FMN的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{x-2}{x+2}$ex
(Ⅰ)確定函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:函數(shù)g(x)=$\frac{2{e}^{x}-x-1}{2{x}^{2}}$在(0,+∞)上存在最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖所示是沿圓錐的兩條母線將圓錐削去一部分后得幾何體的三視圖,其體積為$\frac{16π}{9}+\frac{2\sqrt{3}}{3}$,則圓錐的母線長(zhǎng)為(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4D.$\sqrt{2}+\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案