【題目】已知函數(shù),,曲線(xiàn)在處的切線(xiàn)方程為.
(1)求的解析式;
(2)當(dāng)時(shí),求證:;
(3)若對(duì)任意的恒成立,則實(shí)數(shù)的取值范圍.
【答案】(1)(2)見(jiàn)解析(3)
【解析】
(1)由題意利用導(dǎo)函數(shù)與原函數(shù)的關(guān)系得到關(guān)于a,b的方程組,求解方程組即可確定函數(shù)的解析式;
(2)構(gòu)造函數(shù)φ(x)=f(x)+x2-x=ex-x-1,利用導(dǎo)函數(shù)的性質(zhì)確定其最小值即可證得題中的不等式;
(3)將原問(wèn)題轉(zhuǎn)化為≥k對(duì)任意的x∈(0,+∞)恒成立,然后構(gòu)造函數(shù)結(jié)合(2)中的結(jié)論求解實(shí)數(shù)k的取值范圍即可.
(1)f(x)=ex-x2+a,f'(x)=ex-2x.
由已知,f(x)=ex-x2-1.
(2)令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,
當(dāng)x∈(-∞,0)時(shí),φ'(x)<0,φ(x)單調(diào)遞減;
當(dāng)x∈(0,+∞)時(shí),φ'(x)>0,φ(x)單調(diào)遞增.
∴φ(x)min=φ(0)=0,從而f(x)≥-x2+x.
(3)f(x)>kx對(duì)任意的x∈(0,+∞)恒成立
≥k對(duì)任意的x∈(0,+∞)恒成立,
令g(x)=,x>0,
∴g′(x)=,
由(2)可知當(dāng)x∈(0,+∞)時(shí),ex-x-1>0恒成立,
令g'(x)>0,得x>1;g'(x)<0,得0<x<1.
∴g(x)的增區(qū)間為(1,+∞),減區(qū)間為(0,1).g(x)min=g(1)=0.
∴k≤g(x)min=g(1)=e-2,∴實(shí)數(shù)k的取值范圍為(-∞,e-2].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某二手交易市場(chǎng)對(duì)某型號(hào)的二手汽車(chē)的使用年數(shù)()與銷(xiāo)售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
銷(xiāo)售價(jià)格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)試求關(guān)于的回歸直線(xiàn)方程.
(參考公式:,)
(II)已知每輛該型號(hào)汽車(chē)的收購(gòu)價(jià)格為萬(wàn)元,根據(jù)(I)中所求的回歸方程,預(yù)測(cè)為何值時(shí),銷(xiāo)售一輛該型號(hào)汽車(chē)所獲得的利潤(rùn)最大?(利潤(rùn)=銷(xiāo)售價(jià)格-收購(gòu)價(jià)格)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.
(1)求直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)若直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條規(guī)定:機(jī)動(dòng)車(chē)行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇到行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車(chē)讓行,俗稱(chēng)“禮讓斑馬線(xiàn)”.下表是某十字路口監(jiān)控設(shè)備所抓拍的6個(gè)月內(nèi)駕駛員不“禮讓斑馬線(xiàn)”行為的統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“禮讓斑馬線(xiàn)”駕駛員人數(shù) | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)請(qǐng)根據(jù)表中所給前5個(gè)月的數(shù)據(jù),求不“禮讓斑馬線(xiàn)”的駕駛員人數(shù)與月份之間的回歸直線(xiàn)方程;
(Ⅱ)若該十字路口某月不“禮讓斑馬線(xiàn)”駕駛員人數(shù)的實(shí)際人數(shù)與預(yù)測(cè)人數(shù)之差小于5,則稱(chēng)該十字路口“禮讓斑馬線(xiàn)”情況達(dá)到“理想狀態(tài)”.試根據(jù)(Ⅰ)中的回歸直線(xiàn)方程,判斷6月份該十字路口“禮讓斑馬線(xiàn)”情況是否達(dá)到“理想狀態(tài)”?
(Ⅲ)若從表中3、4月份分別選取4人和2人,再?gòu)乃x取的6人中任意抽取2人進(jìn)行交規(guī)調(diào)查,求抽取的兩人恰好來(lái)自同一月份的概率.
參考公式: ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.
(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;
(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,且滿(mǎn)足1e(e為自然對(duì)數(shù)的底數(shù))求x1x2的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)為橢圓上的動(dòng)點(diǎn),若的最大值和最小值分別為和.
(I)求橢圓的方程
(Ⅱ)設(shè)不過(guò)原點(diǎn)的直線(xiàn)與橢圓 交于兩點(diǎn),若直線(xiàn)的斜率依次成等比數(shù)列,求面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】哈師大附中高三學(xué)年統(tǒng)計(jì)甲、乙兩個(gè)班級(jí)一模數(shù)學(xué)分?jǐn)?shù)(滿(mǎn)分150分),每個(gè)班級(jí)20名同學(xué),現(xiàn)有甲、乙兩位同學(xué)的20次成績(jī)?nèi)缦铝星o葉圖所示:
(I)根據(jù)基葉圖求甲、乙兩位同學(xué)成績(jī)的中位數(shù),并將乙同學(xué)的成績(jī)的頻率分布直方圖填充完整;
(Ⅱ)根據(jù)基葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可)
(Ⅲ)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),設(shè)事件為“其中2 個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知點(diǎn),直線(xiàn):(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)和曲線(xiàn)的交點(diǎn)為,.
(1)求直線(xiàn)和曲線(xiàn)的普通方程;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)對(duì)于實(shí)數(shù),,若,有,求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若,函數(shù),求函數(shù)在區(qū)間上的最大值和最小值;
(3)若存在實(shí)數(shù),使得對(duì)于任意實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com