【題目】已知拋物線,過點的直線交拋物線于兩點,坐標(biāo)原點為,且12.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)以為直徑的圓的面積為時,求的面積的值.
【答案】(I);(Ⅱ)的面積為4.
【解析】試題分析:(I)將代入,利用韋達(dá)定理可得,,利用,可得,代入即可得到的值;(Ⅱ)根據(jù)(I)中的值,將化為,可得到的式子,由直徑,解方程可求出的值,進(jìn)而可求出的面積的值.
試題解析:(I)設(shè),代入,得
設(shè)點,則,則,
因為,
所以,即,解得.
所以拋物線的方程為.
(Ⅱ)由(I)化為,則.
又,
因為以為直徑的圓的面積為,
所以圓的半徑為4,直徑.
則,得,得,得,得(舍去)或,解得.
當(dāng)時,直線的方程為,原點到直線的距離為,且,所以的面積為;
當(dāng)時,直線的方程為,原點到直線的距離為,且,所以的面積為.
綜上,的面積為4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時)
(Ⅰ)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計該校學(xué)生每周平均體育運(yùn)動時間超過4個小時的概率.
(Ⅲ)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時間超過4個小時.請完成每周平均體育運(yùn)動時間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)在上的最小值;
(Ⅱ)設(shè)函數(shù),若函數(shù)的零點有且只有一個,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加的5項預(yù)賽成績記錄如下:
甲 | 82 | 82 | 79 | 95 | 87 |
乙 | 95 | 75 | 80 | 90 | 85 |
(1)從甲、乙兩人的成績中各隨機(jī)抽取一個,求甲的成績比乙高的概率;
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】輪船由甲地逆水勻速行駛至乙地,甲、乙兩地相距s(km),水流速度為p(km/h),輪船在靜水中的最大速度為q(km/h)(p,q為常數(shù),且q>p),已知輪船每小時的燃料費用與輪船在靜水中的速度v(km/h)成正比,比例系數(shù)為常數(shù)k.
(1)將全程燃料費用y(元)表示為靜水中速度v(km/h)的函數(shù);
(2)若s=100,p=10,q=110,k=2,為了使全程的燃料費用最少,輪船的實際行駛速度應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·
乙商場:從裝有2個白球、2個藍(lán)球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.
(Ⅰ)求實數(shù)的值;
(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫()與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):
日期 | 1月11號 | 1月12號 | 1月13號 | 1月14號 | 1月15號 |
平均氣溫() | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;
(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報1月16號的白天平均氣溫為,請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
⑴討論函數(shù)的單調(diào)性;
⑵若存在兩個極值點,且是函數(shù)的極小值點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com