【題目】隨著社會的發(fā)展,終身學習成為必要,工人知識要更新,學習培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過長期培訓(xùn)(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).
(1)問類、類工人各抽查了多少工人,并求出直方圖中的;
(2)求類工人生產(chǎn)能力的中位數(shù),并估計類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產(chǎn)能力與培訓(xùn)時間長短有關(guān).能力與培訓(xùn)時間列聯(lián)表
短期培訓(xùn) | 長期培訓(xùn) | 合計 | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
【答案】(1)0.024;(2)可以在犯錯誤概率不超過的前提下,認為生產(chǎn)能力與培訓(xùn)時間長短有關(guān)
【解析】試題分析:(1)由莖葉圖知A類工人中抽查人數(shù)為25名,B類工人中應(yīng)抽查100﹣25=75,由頻率分布直方圖求出x;
(2)由莖葉圖知A類工人生產(chǎn)能力的中位數(shù)為122,由(1)及頻率分布直方圖,估計B類工人生產(chǎn)能力的平均數(shù);
(3)求出K2,與臨界值比較,即可得出結(jié)論.
試題解析:
解:(1)由莖葉圖知A類工人中抽查人數(shù)為25名,
∴B類工人中應(yīng)抽查100-25=75(名).
由頻率分布直方圖得 (0.008+0.02+0.048+x)10=1,得x=0.024.
(2)由莖葉圖知A類工人生產(chǎn)能力的中位數(shù)為122
由(1)及頻率分布直方圖,估計B類工人生產(chǎn)能力的平均數(shù)為
1150.00810+1250.02010+1350.04810+1450.02410=133.8
(3)由(1)及所給數(shù)據(jù)得能力與培訓(xùn)的22列聯(lián)表,
短期培訓(xùn) | 長期培訓(xùn) | 合計 | |
能力優(yōu)秀 | 8 | 54 | 62 |
能力不優(yōu)秀 | 17 | 21 | 38 |
合計 | 25 | 75 | 100 |
由上表得>10.828
因此,可以在犯錯誤概率不超過0.1%的前提下,認為生產(chǎn)能力與培訓(xùn)時間長短有關(guān).
科目:高中數(shù)學 來源: 題型:
【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:)落在各個小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | |||||||
頻數(shù) | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這50件產(chǎn)品尺寸的樣本平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)產(chǎn)品的頻數(shù)分布,求出產(chǎn)品尺寸中位數(shù)的估計值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,,為橢圓的左、右焦點,為橢圓上的任意一點,的面積的最大值為1,、為橢圓上任意兩個關(guān)于軸對稱的點,直線與軸的交點為,直線交橢圓于另一點.
(1)求橢圓的標準方程;
(2)求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017安徽蚌埠一模)已知橢圓C:=1(a>b>0)的離心率為,F1,F2是橢圓的兩個焦點,P是橢圓上任意一點,且△PF1F2的周長是8+2.
(1)求橢圓C的方程;
(2)設(shè)圓T:(x-2)2+y2=,過橢圓的上頂點M作圓T的兩條切線交橢圓于E,F兩點,求直線EF的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著社會的發(fā)展,終身學習成為必要,工人知識要更新,學習培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過長期培訓(xùn)(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).
(1)問類、類工人各抽查了多少工人,并求出直方圖中的;
(2)求類工人生產(chǎn)能力的中位數(shù),并估計類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產(chǎn)能力與培訓(xùn)時間長短有關(guān).能力與培訓(xùn)時間列聯(lián)表
短期培訓(xùn) | 長期培訓(xùn) | 合計 | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,且保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和費率浮動比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發(fā)生有責任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發(fā)生有責任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% |
A4 | 上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% |
A6 | 上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生責任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機購為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=kex﹣x3+2 (k∈R)恰有三個極值點xl,x2,x3,且xl<x2<x3.
(I)求k的取值范圍:
(II)求f(x2)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com