【題目】設(shè)等差數(shù)列的公差,且,記

(1)用分別表示,并猜想;

(2)用數(shù)學(xué)歸納法證明你的猜想.

【答案】(1).;(2)見(jiàn)解析.

【解析】試題分析:(1)分別求出的值,觀察共有性質(zhì),從而可歸納猜想出;

(2)根據(jù)數(shù)學(xué)歸納法的基本原理,①當(dāng)n=1時(shí),驗(yàn)證猜想正確,②假設(shè)當(dāng)nk時(shí)(kN*)時(shí)結(jié)論成立,證明當(dāng)nk+1時(shí)結(jié)論正確即可.

試題解析:(1)T1

T2××;

T3××

由此可猜想Tn.

(2)證明:①當(dāng)n=1時(shí),T1,結(jié)論成立.

②假設(shè)當(dāng)nk時(shí)(k∈N*)時(shí)結(jié)論成立,

Tk.

則當(dāng)nk+1時(shí),Tk+1Tk.

nk+1時(shí),結(jié)論成立.

由①②可知,Tn對(duì)于一切n∈N*恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠有4臺(tái)大型機(jī)器,在一個(gè)月中,一臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障需要維修的概率為.

(1)若出現(xiàn)故障的機(jī)器臺(tái)數(shù)為,求的分布列;

(2) 該廠至少有多少名工人才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%?

(3)已知一名工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位工人1萬(wàn)元的工資,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,就使該廠產(chǎn)生5萬(wàn)元的利潤(rùn),否則將不產(chǎn)生利潤(rùn),若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面,

1)求證: 平面;

2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,平面平面,底面為梯

形, , , .且均為正三角形, 的中點(diǎn),

重心.

(1)求證: 平面

(2)求異面直線的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)求函數(shù)在區(qū)間上的最小值;

2)對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

3)證明:對(duì)一切, 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在△ABC中,已知點(diǎn)D在BC邊上,滿(mǎn)足AD⊥AC,cos ∠BAC=-,AB=3,BD=.

(1)求AD的長(zhǎng);

(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆廣東省深圳市高三下學(xué)期第一次調(diào)研考試(一模)數(shù)學(xué)理】已知函數(shù)為自然對(duì)數(shù)的底數(shù).

(1)求曲線處的切線方程;

(2)關(guān)于的不等式上恒成立,求實(shí)數(shù)的值;

(3)關(guān)于的方程有兩個(gè)實(shí)根,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆陜西省西安市鐵一中學(xué)高三上學(xué)期第五次模擬考試數(shù)學(xué)(理)】已知函數(shù),其中常數(shù).

(Ⅰ)討論上的單調(diào)性;

(Ⅱ)當(dāng)時(shí),若曲線上總存在相異兩點(diǎn),使曲線兩點(diǎn)處的切線互相平行,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),空氣質(zhì)量成為人們?cè)絹?lái)越關(guān)注的話(huà)題,空氣質(zhì)量指數(shù)(,簡(jiǎn)稱(chēng))是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級(jí), 為優(yōu); 為良; 為輕度污染; 為中度污染; 為重度污染;大于300為嚴(yán)重污染.環(huán)保部門(mén)記錄了2017年某月哈爾濱市10天的的莖葉圖如下:

(1)利用該樣本估計(jì)該地本月空氣質(zhì)量?jī)?yōu)良()的天數(shù);(按這個(gè)月總共30天計(jì)算)

(2)現(xiàn)工作人員從這10天中空氣質(zhì)量為優(yōu)良的日子里隨機(jī)抽取2天進(jìn)行某項(xiàng)研究,求抽取的2天中至少有一天空氣質(zhì)量是優(yōu)的概率;

(3)將頻率視為概率,從本月中隨機(jī)抽取3天,記空氣質(zhì)量?jī)?yōu)良的天數(shù)為,求的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案