分析 (1)由a1<a2,a1,a2是方程x2-4x+3=0的兩根,求出a1=1,a2=3,由此利用等差數(shù)列的性質(zhì)能求出數(shù)列{an}的通項公式.
(2)由$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用裂項求和法能求出數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和Sn.
解答 (本小題滿分12分)
解:(1)∵{an}是遞增的等差數(shù)列,∴a1<a2,…(1分)
又a1,a2是方程x2-4x+3=0的兩根,∴解方程,得a1=1,a2=3,…(3分)
∴d=a2-a1=3-1=2,…(4分)
∴an=1+(n-1)×2=2n-1.…(6分)
(2)$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,…(9分)
∴Sn=$\frac{1}{2}$(1-$\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.…(12分)
點評 本題考查數(shù)列的通項公式、前n項和的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)和裂項求和法的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | (0,1) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,4) | B. | ($\frac{13}{2}$,4) | C. | (-$\frac{13}{2}$,4) | D. | (-$\frac{13}{2}$,-4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com