A. | $4+\sqrt{7}$ | B. | $4-\sqrt{3}$ | C. | $4+\sqrt{3}$ | D. | $4-\sqrt{7}$ |
分析 根據(jù)雙曲線的定義求出|BE|=10a,|BF|=8a,結(jié)合拋物線的定義求出交點B的縱坐標(biāo),結(jié)合直角三角形的邊角關(guān)系建立方程進行求解即可.
解答 解:根據(jù)雙曲線和拋物線的對稱性得|BF|=|AF|=$\frac{4}{5}$|BE|,
∵|BE|-|BF|=2a,
∴|BE|-$\frac{4}{5}$|BE|=|BE|=2a,
則|BE|=10a,|BF|=8a,
∵拋物線y2=2px(p>0)與雙曲線有公共的焦點F,
∴$\frac{p}{2}$=c,且x=-c是拋物線的準(zhǔn)線,
則|BD|=|BF|=8a,
設(shè)B(x,y),則由拋物線的性質(zhì)得x+c=8a,即x=8a-c,
代入拋物線方程y2=2px=4cx得y2=4c(8a-c),
則|DE|2=y2=4c(8a-c),
在直角三角形BDE中,
BE2=DE2+BD2,
即100a2=64a2+4c(8a-c),
即36a2-32ac+4c2=0,
即c2-8ac+9a2=0,
解e2-8e+9=0,
得e=$\frac{8±\sqrt{64-36}}{2}$=4±$\sqrt{7}$,
∵0<a<b,
∴e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$>$\sqrt{2}$,
∴e=4+$\sqrt{7}$,
故選:A
點評 本題主要考查雙曲線離心率的計算,根據(jù)拋物線和雙曲線的定義建立方程關(guān)系,求出a,c的關(guān)系是解決本題的關(guān)鍵.綜合性較強,有一定的難度.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 《雷雨》只能在周二上演 | B. | 《茶館》可能在周二或周四上演 | ||
C. | 周三可能上演《雷雨》或《馬蹄聲碎》 | D. | 四部話劇都有可能在周二上演 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{\sqrt{2016}}}$ | B. | $\frac{1}{{\sqrt{2017}}}$ | C. | $\frac{1}{{\sqrt{2018}}}$ | D. | $\frac{1}{{\sqrt{2019}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cos2x-sin2x | B. | y=sin2x+cos2x | C. | y=cos2x-sin2x | D. | y=sin2x+cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com