A. | y=cos2x-sin2x | B. | y=sin2x+cos2x | C. | y=cos2x-sin2x | D. | y=sin2x+cosx |
分析 利用三角恒等變換化簡函數的解析式,再利用三角函數的奇偶性和周期性逐一判斷各個選項是否正確,從而得出結論.
解答 解:y=cos2x-sin2x=cos2x-$\frac{1-cos2x}{2}$=$\frac{3}{2}$cos2x-$\frac{1}{2}$ 是偶函數,它的周期為$\frac{2π}{2}$=π,滿足條件;
而y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$) 和 y=cos2x-sin2x=$\sqrt{2}$cos(2x+$\frac{π}{4}$)都是非奇非偶函數,
故排除B、C,
y=sin2x+cosx=-cos2x+cosx+1=-${(cosx-\frac{1}{2})}^{2}$+$\frac{5}{4}$不是偶函數,故排除D,
故選:A.
點評 本題主要考查三角恒等變換,三角函數的奇偶性和周期性,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $4+\sqrt{7}$ | B. | $4-\sqrt{3}$ | C. | $4+\sqrt{3}$ | D. | $4-\sqrt{7}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 函數f(x)的最小正周期為π | |
B. | 函數f(x)的值域為[-$\frac{7}{2}$,$\frac{7}{2}$] | |
C. | 函數f(x)的圖象關于直線x=-$\frac{1}{6}$對稱 | |
D. | 函數f(x)的圖象向右平移$\frac{1}{3}$個單位得到函數y=Asinωx的圖象 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com