10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),過F2作垂直于x軸的直線l1交橢圓C于A,B兩點(diǎn),且滿足|AF1|=7|AF2|
(Ⅰ)求橢圓C的離心率;
(Ⅱ)過F1作斜率為1的直線l2交C于M,N兩點(diǎn).O為坐標(biāo)原點(diǎn),若△OMN的面積為$\frac{2\sqrt{6}}{5}$,求橢圓C的方程.

分析 (Ⅰ)由已知推導(dǎo)出|AF1|=$\frac{7a}{4}$,|AF2|=$\frac{a}{4}$,再由勾股定理得到得($\frac{7a}{4}$)2-($\frac{a}{4}$)2=4c2,由此能求出橢圓C的離心率.
(Ⅱ)橢圓方程化為x2+4y2=b2,直線l為:y=x+$\sqrt{3}b$,聯(lián)立可得$5{x}^{2}+8\sqrt{3}bx+8^{2}$=0,由此利用韋達(dá)定理、弦長公式,結(jié)合已知條件能求出橢圓C的方程.

解答 解:(Ⅰ)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),
過F2作垂直于x軸的直線l1交橢圓C于A,B兩點(diǎn),且滿足|AF1|=7|AF2|,
∴由|AF1|+|AF2|=2a,|AF1|=7|AF2|,
解得|AF1|=$\frac{7a}{4}$,|AF2|=$\frac{a}{4}$,…(2分)
直角△AF1F2中,由勾股定理得($\frac{7a}{4}$)2-($\frac{a}{4}$)2=4c2,
∴橢圓C的離心率$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$.…(4分)
(Ⅱ)橢圓方程化為x2+4y2=b2,直線l為:y=x+$\sqrt{3}b$,
聯(lián)立可得$5{x}^{2}+8\sqrt{3}bx+8^{2}$=0,…(6分)
設(shè)M(x1,y1),N(x2,y2),則${x}_{1}+{x}_{2}=-\frac{8\sqrt{3}b}{5}$,${x}_{1}{x}_{2}=\frac{8^{2}}{5}$,得|x1-x2|=$\frac{4\sqrt{2}b}{5}$.
△OMN的面積為:$\frac{\sqrt{3}b}{2}$|y1-y2|=$\frac{\sqrt{3}b}{2}$|x1-x2|=$\frac{\sqrt{3}b}{2}×\frac{4\sqrt{2}b}{5}$=$\frac{2\sqrt{6}}{5}^{2}$=$\frac{2\sqrt{6}}{5}$,…(10分)
∴b2=1,a2=4,∴橢圓C的方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.…(12分)

點(diǎn)評 本題考查橢圓離心率的求法,考查橢圓方程的求法,是中檔題,解題時要認(rèn)真審題,注意韋達(dá)定理、弦長公式、橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(1-$\frac{1}{x}$)(1+x)4的展開式中含x2項的系數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若關(guān)于x的方程x2+(a+1)(arcsinx)x+2a-1=0有且僅有一個實(shí)數(shù)根,則實(shí)數(shù)a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.焦點(diǎn)坐標(biāo)(-5,0),實(shí)軸長為6,求雙曲線標(biāo)準(zhǔn)方程并求此雙曲線漸近線方程及離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),O為坐標(biāo)原點(diǎn),若按雙曲線右支上存在一點(diǎn)P,使$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}P}$=0,且|$\overrightarrow{{F}_{1}{F}_{2}}$|=|$\overrightarrow{P{F}_{2}}$|,則雙曲線的離心率為(  )
A.1±$\sqrt{2}$B.1+$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距為4,設(shè)右焦點(diǎn)為F,過原點(diǎn)O的直線l與橢圓C交于A,B兩點(diǎn),線段AF的中點(diǎn)為M,線段BF的中點(diǎn)為N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{1}{4}$.
(Ⅰ) 若離心率e=$\frac{1}{2}$,求橢圓C的方程;
(Ⅱ) 求橢圓C的長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知α,β是△ABC的兩銳角,且$(sinα+1)(1-\frac{1}{sinα})>(cosβ+1)(1-\frac{1}{cosβ})$,則△ABC的形狀為(  )
A.銳角三角形B.鈍角三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,短半軸長為1.
(Ⅰ)求橢圓G的方程;
(Ⅱ)設(shè)橢圓G的短軸端點(diǎn)分別為A,B,點(diǎn)P是橢圓G上異于點(diǎn)A,B的一動點(diǎn),直線PA,PB分別與直線x=4于M,N兩點(diǎn),以線段MN為直徑作圓C.
①當(dāng)點(diǎn)P在y軸左側(cè)時,求圓C半徑的最小值;
②問:是否存在一個圓心在x軸上的定圓與圓C相切?若存在,指出該定圓的圓心和半徑,并證明你的結(jié)論;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知平面直角坐標(biāo)系中兩個定點(diǎn)E(3,2),F(xiàn)(-3,2),如果對于常數(shù)λ,在函數(shù)y=|x+2|+|x-2|-4,(x∈[-4,4])的圖象上有且只有6個不同的點(diǎn)P,使得$\overrightarrow{PE}$$•\overrightarrow{PF}$=λ成立,那么λ的取值范圍是( 。
A.(-5,-$\frac{9}{5}$)B.(-$\frac{9}{5}$,11)C.(-$\frac{9}{5}$,-1)D.(-5,11)

查看答案和解析>>

同步練習(xí)冊答案