【題目】已知橢圓:()的離心率為,連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)設(shè)為坐標(biāo)原點(diǎn),取上不同于的點(diǎn),以為直徑作圓與相交另外一點(diǎn),求該圓面積的最小值時(shí)點(diǎn)的坐標(biāo).
【答案】(1);(2);(3).
【解析】
試題分析:(1)借助題設(shè)條件建立方程組求解;(2)運(yùn)用拋物線的定義求解;(3)借助題設(shè)運(yùn)用圓與拋物線的位置關(guān)系探求.
試題解析:
(1)由,得,再由,解得……………………1分
由題意可知,即…………………………………………………2分
解方程組得,……………………………………………………3分
所以橢圓的方程是……………………………………………………………4分
(2)因?yàn)?/span>,所以動(dòng)點(diǎn)到定直線:的距離等于它到定點(diǎn)的距離,所以動(dòng)點(diǎn)的軌跡是以為準(zhǔn)線,為焦點(diǎn)的拋物線,…………………………………………6分
所以點(diǎn)的軌跡的方程為………………………………………………………7分
(3)因?yàn)橐?/span>為直徑的圓與相交于點(diǎn),所以,即…8分
設(shè),,,
所以
因?yàn)?/span>,,化簡(jiǎn)得……………………………………9分
所以,
當(dāng)且僅當(dāng)即,時(shí)等號(hào)成立.…………………………10分
圓的直徑
因?yàn)?/span>,所以當(dāng)即時(shí),,…………………11分
所以所求圓的面積的最小時(shí),點(diǎn)的坐標(biāo)為………………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +在1,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(I)求證:恒成立;
(II)若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐,底面側(cè)面,分別為的中點(diǎn),且,,,.
(I)證明:平面;
(II)設(shè),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(I)求證:恒成立;
(II)若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義的零點(diǎn)為的不動(dòng)點(diǎn),已知函數(shù).
Ⅰ.當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
Ⅱ.對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
Ⅲ.若函數(shù)只有一個(gè)零點(diǎn)且,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列4個(gè)命題:
①為了了解800名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見(jiàn),打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔為40;
②四邊形為長(zhǎng)方形,,,為中點(diǎn),在長(zhǎng)方形內(nèi)隨機(jī)取一點(diǎn),取得的點(diǎn)到的距離大于1的概率為;
③把函數(shù)的圖象向右平移個(gè)單位,可得到的圖象;
④已知回歸直線的斜率的估計(jì)值為,樣本點(diǎn)的中心為,則回歸直線方程為.
其中正確的命題有__________.(填上所有正確命題的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過(guò)點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線于兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)求證: ;
(3)求證:當(dāng)時(shí), , 恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com