用黃金分割法尋找最佳點(diǎn),試驗(yàn)區(qū)間為[1000,2000],若第一個(gè)二個(gè)試點(diǎn)為好點(diǎn),則第三個(gè)試點(diǎn)應(yīng)選在           
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,如圖,AB是⊙O的直徑,AC切⊙O于點(diǎn)A,AC=AB,CO交⊙O于點(diǎn)P,CO的延長(zhǎng)線交⊙O于點(diǎn)F, BP的延長(zhǎng)線交AC于點(diǎn)E.

⑴求證:FA∥BE;
⑵求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

選修4—1:幾何證明選講如圖,銳角△ABC的內(nèi)心為I,過點(diǎn)A作直線BI的垂線,垂足為H,點(diǎn)E為內(nèi)切圓I與邊CA的切點(diǎn).
(Ⅰ)求證:四點(diǎn)A,I,H,E共圓;
(Ⅱ)若∠C=,求∠IEH的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

【選修4—4:坐標(biāo)系與參數(shù)方程】 以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,已知點(diǎn)的直角坐標(biāo)為,點(diǎn)的極坐標(biāo)為,若直線過點(diǎn),且傾斜角為,圓為 圓心、為半徑。
(I) 寫出直線的參數(shù)方程和圓的極坐標(biāo)方程;
(Ⅱ)試判定直線和圓的位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)已知圓C滿足(1)截y軸所得弦MN長(zhǎng)為4;(2)被x軸分成兩段圓弧,其弧 長(zhǎng)之比為3:1,且圓心在直線y=x上,求圓C的方程。
(為方便學(xué)生解答,做了一種情形的輔助圖形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
直線AB過圓心O,交圓OA、B,直線AF交圓OF
(不與B重合),直線與圓O相切于C,交ABE,且與AF垂直,垂足為G,連接AC
求證:(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

選做題(本小題滿分10分,請(qǐng)考生在第22、23、24三題中任選一題作答。如果多做,則按所做的第一題計(jì)分,作答時(shí)請(qǐng)?jiān)诖痤}紙上所選題目的方框內(nèi)打“√”。
22.選修4-1:幾何證明選講。
如圖,是圓的直徑,是弦,的平分線交圓于點(diǎn),,交的延長(zhǎng)線于點(diǎn),于點(diǎn)。
(1)求證:是圓的切線;
(2)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(幾何證明選講選做題)中,,,,,則       
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題滿分10分)選修4-1:幾何證明選講
如圖,在△ABC中,∠ABC=90°,以BC為直徑的圓O交 
 
AC于點(diǎn)D,設(shè)E為AB的中點(diǎn).
(1)求證:直線DE為圓O的切線;
(2)設(shè)CE交圓O于點(diǎn)F,求證:CD·CA=CF·CE.

查看答案和解析>>

同步練習(xí)冊(cè)答案