已知集合P={y|y≥1},Q={x|y=ln(x-2)},則P∩Q=
 
考點:交集及其運算
專題:集合
分析:求出集合P,Q,利用集合的基本運算即可得到結(jié)論.
解答: 解:Q={x|y=ln(x-2)}={x|x-2>0}={x|x>2},
∵P={y|y≥1},
∴P∩Q={x|x>2},
故答案為:{x|x>2},
點評:本題主要考查了集合的基本運算,根據(jù)不等式的性質(zhì)求出集合Q是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=aln(x+1)+x2
(Ⅰ)當a>0時,求函數(shù)的極大值和極小值點;
(Ⅱ)證明:對任意的正整數(shù)n,不等式ln
n2+1
n2+n
1
n2
-
1
n4
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線y2=2px(p>0)的焦點為F,準線為l,點A(0,2),線段FA與拋物線交于點B,過B作l的垂線,垂足為M.若AM⊥MF,則p=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
-1
(x2-sinx)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線y=2x-x3上一點M(-1,-1),則曲線在點M處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線f(x)=ax2+bx+c與(a>0)與x軸的兩個交點的橫坐標分別為1和3,則不等式ax2+bx+c<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)對任意x∈R都有f(x+2)=-f(x),當x∈[-1,0)時,f(x)=4x,則f(1)+f(2)+…+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用0,1,2,3,4,5這六個數(shù)字可以組成多少個無重復數(shù)字的:
①六位奇數(shù);
②個位數(shù)字不是5的六位數(shù);
③不大于4310的四位偶數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學有同樣的畫冊2本,同樣的集郵冊3本,從中取出4本贈送給4位朋友,每位朋友1本,則不同的贈送方法共有
 
種.

查看答案和解析>>

同步練習冊答案