【題目】已知函數(shù)

(1)求的最小正周期;

(2)設(shè)為銳角三角形,角A的對(duì)邊長(zhǎng)B的對(duì)邊長(zhǎng)的面積.

【答案】1π2

【解析】

1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性,得出結(jié)論.

2)根據(jù)fA)=0,求得A的值,再利用正弦定理求得B,可得C的值,利用△ABC的面積為 absinC,計(jì)算求得結(jié)果.

解:(1)函數(shù)fx)=sinxcosxsin2xsin2xsin2x+)﹣

故它的最小正周期為π

2)∵△ABC為銳角三角形,角A的對(duì)邊長(zhǎng),角B的對(duì)邊長(zhǎng),

fA)=sin2A+)﹣0

sin2A+)=,∴2A+,∴A

再由正弦定理可得,∴sinB,

B,∴CπAB,

sinCsin+)=sincos+cossin,

故△ABC的面積為 absinC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們把定義在上,且滿足(其中常數(shù),滿足,,)的函數(shù)叫做似周期函數(shù).

1)若某個(gè)似周期函數(shù)滿足且圖像關(guān)于直線對(duì)稱,求證:函數(shù)是偶函數(shù);

2)當(dāng),時(shí),某個(gè)似周期函數(shù)在時(shí)的解析式為,求函數(shù),的解析式;

3)對(duì)于確定的且當(dāng)時(shí),,試研究似周期函數(shù)在區(qū)間上是否可能是單調(diào)函數(shù)?若可能,求出的取值范圍;若不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問100名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下列聯(lián)表:

1)能否有的把握認(rèn)為是否愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)?請(qǐng)說明理由.

2)利用分層抽樣的方法從以上愛好該項(xiàng)運(yùn)動(dòng)的大學(xué)生中抽取6人組建運(yùn)動(dòng)達(dá)人社,現(xiàn)從運(yùn)動(dòng)達(dá)人社中選派2人參加某項(xiàng)校際挑戰(zhàn)賽,求選出的2人中恰有1名女大學(xué)生的概率.

總計(jì)

愛好

40

20

60

不愛好

15

25

40

總計(jì)

55

45

100

附:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面是矩形,平面,,以為直徑的球面交于點(diǎn),交于點(diǎn).則點(diǎn)到平面的距離為_

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖的折線圖是某超市2018年一月份至五月份的營(yíng)業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( )

A.該超市2018年的前五個(gè)月中三月份的利潤(rùn)最高

B.該超市2018年的前五個(gè)月的利潤(rùn)一直呈增長(zhǎng)趨勢(shì)

C.該超市2018年的前五個(gè)月的利潤(rùn)的中位數(shù)為0.8萬元

D.該超市2018年前五個(gè)月的總利潤(rùn)為3.5萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則=

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,,點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在斜率為的直線與橢圓相交于,兩點(diǎn),使得?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)恰有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是____________

查看答案和解析>>

同步練習(xí)冊(cè)答案