【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則=
A.B.
C.D.
【答案】B
【解析】
先根據(jù)題意寫(xiě)出直線的方程,再將直線的方程與拋物線y2=2x的方程組成方程組,消去y得到關(guān)于x的二次方程,最后利用根與系數(shù)的關(guān)系結(jié)合拋物線的定義即可求線段AB的長(zhǎng).
解:拋物線C:y2=2x的焦點(diǎn)為F(,0),準(zhǔn)線為l:x=﹣,設(shè)M(x1,y1),N(x2,y2),M,N到準(zhǔn)線的距離分別為dM,dN,
由拋物線的定義可知|MF|=dM=x1+,|NF|=dN=x2+,于是|MN|=|MF|+|NF|=x1+x2+1.
∵,則,易知:直線MN的斜率為±,
∵F(,0),
∴直線PF的方程為y=±(x﹣),
將y=±(x﹣),代入方程y2=2x,得3(x﹣)2=2x,化簡(jiǎn)得12x2﹣20x+3=0,
∴x1+x2,于是|MN|=x1+x2+11
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的焦點(diǎn)為.
若點(diǎn)為拋物線上異于原點(diǎn)的任一點(diǎn),過(guò)點(diǎn)作拋物線的切線交軸于點(diǎn),證明:.
,是拋物線上兩點(diǎn),線段的垂直平分線交軸于點(diǎn) (不與軸平行),且.過(guò)軸上一點(diǎn)作直線軸,且被以為直徑的圓截得的弦長(zhǎng)為定值,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著時(shí)代的發(fā)展和社會(huì)的進(jìn)步,“農(nóng)村淘寶”發(fā)展十分迅速,促進(jìn)“農(nóng)產(chǎn)品進(jìn)城”和“消費(fèi)品下鄉(xiāng)”.“農(nóng)產(chǎn)品進(jìn)城”很好地解決了農(nóng)產(chǎn)品與市場(chǎng)的對(duì)接問(wèn)題,使農(nóng)民收入逐步提高,生活水平得到改善,農(nóng)村從事網(wǎng)店經(jīng)營(yíng)的人收入逐步提高.西鳳臍橙是四川省南充市的特產(chǎn),因果實(shí)呈橢圓形、色澤橙紅、果面光滑、無(wú)核、果肉脆嫩化渣、汁多味濃,深受人們的喜愛(ài).為此小王開(kāi)網(wǎng)店銷售西鳳臍橙,每月月初購(gòu)進(jìn)西鳳臍橙,每售出1噸西鳳臍橙獲利潤(rùn)800元,未售出的西鳳臍橙,每1噸虧損500元.經(jīng)市場(chǎng)調(diào)研,根據(jù)以往的銷售統(tǒng)計(jì),得到一個(gè)月內(nèi)西鳳臍橙市場(chǎng)的需求量的頻率分布直方圖如圖所示.小王為下一個(gè)月購(gòu)進(jìn)了100噸西鳳臍橙,以x(單位:噸)表示下一個(gè)月內(nèi)市場(chǎng)的需求量,y(單位:元)表示下一個(gè)月內(nèi)經(jīng)銷西鳳臍橙的銷售利潤(rùn).
(1)將y表示為x的函數(shù);
(2)根據(jù)頻率分布直方圖估計(jì)小王的網(wǎng)店下一個(gè)月銷售利潤(rùn)y不少于67000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率,(例如:若需求量,則取,且的概率等于需求量落入的頻率),求小王的網(wǎng)店下一個(gè)月銷售利潤(rùn)y的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐的底面中,∥,,平面,是的中點(diǎn),且
(1)求證:∥平面;
(2)求二面角的余弦值;
(3)在線段內(nèi)是否存在點(diǎn),使得?若存在指出點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對(duì)任意的實(shí)數(shù)x都有(e是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于x的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)m的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,,點(diǎn)在上,且.
(1)點(diǎn)在上,,求證:平面;
(2)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為.
(1)求橢圓的方程;
(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問(wèn)軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
(1)時(shí),求過(guò)的切線;
(2)討論函數(shù)的單調(diào)性;
(3)的零點(diǎn)個(gè)數(shù)少于個(gè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形中,,為線段的中點(diǎn)(如圖1).將沿折起到的位置,使得平面平面,為線段的中點(diǎn)(如圖2).
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)當(dāng)四棱錐的體積為時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com