2.甲、乙兩人玩數(shù)字游戲,先由甲在一張卡片上任意寫出一個(gè)數(shù)字,記為a,再由乙猜甲剛才寫出的數(shù)字,把乙猜出的數(shù)字記為b,且a,b∈{1,2,3},若|a-b|≤1,則乙獲勝,現(xiàn)甲、乙兩人玩一次這個(gè)游戲,則乙獲勝的概率為( 。
A.$\frac{7}{9}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{1}{3}$

分析 先求出基本事件總數(shù),再由列舉法求出乙獲勝包含的基本事件個(gè)數(shù),由此能求出結(jié)果.

解答 解:∵a,b∈{1,2,3},
∴基本事件總數(shù)n=3×3,
∴乙獲勝,∴a,b∈{1,2,3},|a-b|≤1,
當(dāng)a=1時(shí),b=1,2;
當(dāng)a=2時(shí),b=1,2,3;
當(dāng)a=3時(shí),b=2,3.
∴乙獲勝的概率p=$\frac{2+3+2}{3×3}$=$\frac{7}{9}$.
故選:A.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知b是a,c的等差中項(xiàng),且lg(a+1),lg(b-1),lg(c-1)成等差數(shù)列,同時(shí)a+b+c=15,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知復(fù)數(shù)z=a+bi(a,b∈R,b≠0,i為虛數(shù)單位),且2z+$\frac{1}{z}$為實(shí)數(shù),求2z+$\frac{1}{z}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,正方形ABCD與梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=$\frac{1}{2}$PD=1.
(Ⅰ)求證:MB∥平面PDC;
(Ⅱ)求證:PM⊥平面MDC;
(Ⅲ)求三棱錐P-MDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某中學(xué)調(diào)查了某班全部50名同學(xué)參加數(shù)學(xué)興趣小組和語文興趣小組的情況,數(shù)據(jù)如表:(單位:人)
參加數(shù)學(xué)興趣小組未參加數(shù)學(xué)興趣小組
參加語文興趣小組610
未參加語文興趣小組1420
(1)從該班同學(xué)中隨機(jī)選1名,求該同學(xué)至少參加上述一個(gè)興趣小組的概率;
(2)在既參加數(shù)學(xué)興趣小組,又參加語文興趣小組的6個(gè)同學(xué)中,有4個(gè)男同學(xué),2個(gè)女同學(xué),現(xiàn)從這6個(gè)同學(xué)中隨機(jī)抽取2人做進(jìn)一步的調(diào)查,求抽取的2人中恰有1個(gè)女同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若Sn是等差數(shù)列{an}的前n項(xiàng)和,且$\frac{S_3}{3}=\frac{S_2}{2}+5$,則$\lim_{n→∞}\frac{S_n}{n^2}$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.銳角三角形ABC中,a、b、c分別是三內(nèi)角A、B、C的對邊,設(shè)B=2A,則$\frac{a}$的取值范圍是($\sqrt{2}$,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,A=30°,cosB=$\frac{4}{5}$,b=2,則a=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,內(nèi)角A,B,C對應(yīng)的邊長分別為a,b,c,且滿足c(acosB-$\frac{1}{2}$b)=a2-b2
(Ⅰ)求角A;
(2)求sinB+sinC的最大值.

查看答案和解析>>

同步練習(xí)冊答案