【題目】如圖,設(shè)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,拋物線(xiàn)上的點(diǎn)A到y(tǒng)軸的距離等于|AF|﹣1,
(1)求p的值;
(2)若直線(xiàn)AF交拋物線(xiàn)于另一點(diǎn)B,過(guò)B與x軸平行的直線(xiàn)和過(guò)F與AB垂直的直線(xiàn)交于點(diǎn)N,AN與x軸交于點(diǎn)M,求M的橫坐標(biāo)的取值范圍.
【答案】
(1)
解:由題意可得,拋物線(xiàn)上點(diǎn)A到焦點(diǎn)F的距離等于A到直線(xiàn)x=﹣1的距離,
由拋物線(xiàn)定義得, ,即p=2
(2)
解:由(1)得,拋物線(xiàn)方程為y2=4x,F(xiàn)(1,0),可設(shè)(t2,2t),t≠0,t≠±1,
∵AF不垂直y軸,
∴設(shè)直線(xiàn)AF:x=sy+1(s≠0),
聯(lián)立 ,得y2﹣4sy﹣4=0.
y1y2=﹣4,
∴B ,
又直線(xiàn)AB的斜率為 ,故直線(xiàn)FN的斜率為 ,
從而得FN: ,直線(xiàn)BN:y=﹣ ,
則N( ),
設(shè)M(m,0),由A、M、N三點(diǎn)共線(xiàn),得 ,
于是m= = ,得m<0或m>2.
經(jīng)檢驗(yàn),m<0或m>2滿(mǎn)足題意.
∴點(diǎn)M的橫坐標(biāo)的取值范圍為(﹣∞,0)∪(2,+∞).
【解析】(1)利用拋物線(xiàn)的性質(zhì)和已知條件求出拋物線(xiàn)方程,進(jìn)一步求得p值;
(2)設(shè)出直線(xiàn)AF的方程,與拋物線(xiàn)聯(lián)立,求出B的坐標(biāo),求出直線(xiàn)AB,F(xiàn)N的斜率,從而求出直線(xiàn)BN的方程,根據(jù)A、M、N三點(diǎn)共線(xiàn),可求出M的橫坐標(biāo)的表達(dá)式,從而求出m的取值范圍.
本題考查拋物線(xiàn)的簡(jiǎn)單性質(zhì),考查直線(xiàn)與圓錐曲線(xiàn)位置關(guān)系的應(yīng)用,考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選做題】本題包括A、B、C、D四小題,請(qǐng)選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
(1)A.【選修4—1幾何證明選講】
如圖,在△ABC中,∠ABC=90°,BD⊥AC , D為垂足,E是BC的中點(diǎn),求證:∠EDC=∠ABD.
(2)B.【選修4—2:矩陣與變換】
已知矩陣A= 矩陣B的逆矩陣B﹣1= ,求矩陣AB.
(3)【選修4—4:坐標(biāo)系與參數(shù)方程】在平面直角坐標(biāo)系xOy中,已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),橢圓C的參數(shù)方程為 ( 為參數(shù)).設(shè)直線(xiàn)l與橢圓C相交于A , B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).
(4)D. 設(shè)a>0,|x﹣1|< ,|y﹣2|< ,求證:|2x+y﹣4|<a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1,A1A⊥底面ABC,且△ABC為正三角形,A1A=AB=6,D為AC中點(diǎn).
(1)求三棱錐C1﹣BCD的體積;
(2)求證:平面BC1D⊥平面ACC1A1;
(3)求證:直線(xiàn)AB1∥平面BC1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,.
(1)證明:BCA1D;
(2)求二面角A-CC1-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ ,x∈[0,1],證明:
(1)f(x)≥1﹣x+x2
(2)<f(x)≤ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線(xiàn)圖
(1)由折線(xiàn)圖看出,可用線(xiàn)性回歸模型擬合與的關(guān)系,請(qǐng)建立關(guān)于的回歸方程(系數(shù)精確到0.01);
(2)預(yù)測(cè)2018年我國(guó)生活垃圾無(wú)害化處理量.
附注:
參考公式:設(shè)具有線(xiàn)性相關(guān)關(guān)系的兩個(gè)變量的一組觀(guān)察值為,
則回歸直線(xiàn)方程的系數(shù)為:
, .
參考數(shù)據(jù): , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某程序框圖如圖所示,其中t∈Z,該程序運(yùn)行后輸出的k=2,則t的最大值為( )
A.11
B.2057
C.2058
D.2059
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的方程為y=3+ .
(1)寫(xiě)出曲線(xiàn)C的一個(gè)參數(shù)方程;
(2)在曲線(xiàn)C上取一點(diǎn)P,過(guò)點(diǎn)P作x軸,y軸的垂線(xiàn),垂足分別為A,B,求矩形OAPB的周長(zhǎng)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com