如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD//AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且

(1)求證:A、P、D、F四點(diǎn)共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長(zhǎng)。

(1), ,所以四點(diǎn)共圓
(2)

解析試題分析:(1)證明:
,,

所以四點(diǎn)共圓.         5分
(2)解:由(Ⅰ)及相交弦定理得,

,
由切割線定理得
所以為所求.          10分
考點(diǎn):平面幾何知識(shí)
點(diǎn)評(píng):證明四點(diǎn)共圓可證明四邊形對(duì)角互補(bǔ),求切線段長(zhǎng)度可借助于切割線定理將其轉(zhuǎn)化為割線長(zhǎng)度

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,是圓的半徑,且,是半徑上一點(diǎn):延長(zhǎng)交圓于點(diǎn),過(guò)作圓的切線交的延長(zhǎng)線于點(diǎn).求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,的直徑,弦垂直,并與相交于點(diǎn),點(diǎn)為弦上異于點(diǎn)的任意一點(diǎn),連結(jié)、并延長(zhǎng)交于點(diǎn)、.
⑴ 求證:、、四點(diǎn)共圓;
⑵ 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,是圓的內(nèi)接四邊形,,過(guò)點(diǎn)的圓的切線與的延長(zhǎng)線交于點(diǎn),證明:

(Ⅰ)
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,的內(nèi)心為,分別是的中點(diǎn),,內(nèi)切圓分別與邊相切于;證明:三線共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,


(I)
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知PA與⊙O相切,A為切點(diǎn),過(guò)點(diǎn)P的割線交圓于B、C兩點(diǎn),弦CD∥AP,AD、BC相交于點(diǎn)E,F(xiàn)為CE上一點(diǎn),且DE2 = EF·EC.

(Ⅰ)求證:CE·EB = EF·EP;
(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖AB為圓O直徑,P為圓O外一點(diǎn),過(guò)P點(diǎn)作PC⊥AB,垂是為C,PC交圓O于D點(diǎn),PA交圓O于E點(diǎn),BE交PC于F點(diǎn)。

(I)求證:∠PFE=∠PAB (II)求證:CD2=CF·CP

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

選修4-1:幾何證明選講
如圖,圓O1與圓O2相交于A、B兩點(diǎn),AB是圓O2的直徑,過(guò)A點(diǎn)作圓O1的切線交圓O2于點(diǎn)E,并與BO1的延長(zhǎng)線交于點(diǎn)P,PB分別與圓O1、圓O2交于C,D兩點(diǎn)。

求證:(Ⅰ)PA·PD=PE·PC;(Ⅱ)AD=AE。

查看答案和解析>>

同步練習(xí)冊(cè)答案