(09年大豐調(diào)研)(10分)已知斜三棱柱,,,在底面上的射影恰為的中點(diǎn),又知。
(I)求證:平面;
(II)求到平面的距離;
(III)求二面角余弦值的大小。
解析:(I)如圖,取的中點(diǎn),則,因?yàn)?IMG height=19 src='http://thumb.1010pic.com/pic1/img/20090427/20090427145349004.gif' width=68>,
所以,又平面,
以為軸建立空間坐標(biāo)系,
則,,,
,,
,,
,由,知,
又,從而平面;
(II)由,得。
設(shè)平面的法向量為,,,所以
,設(shè),則
所以點(diǎn)到平面的距離。
(III)再設(shè)平面的法向量為,,,
所以
,設(shè),則,
故,根據(jù)法向量的方向,
可知二面角的余弦值大小為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年大豐調(diào)研)(10分)已知A是曲線ρ=3cosθ上任意一點(diǎn),求點(diǎn)A到直線ρcosθ=1距離的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年大豐調(diào)研)(16分)
已知函數(shù),數(shù)列滿足對于一切有,且.?dāng)?shù)列滿足,設(shè).
(Ⅰ)求證:數(shù)列為等比數(shù)列,并指出公比;
(Ⅱ)若,求數(shù)列的通項(xiàng)公式;
(Ⅲ)若(為常數(shù)),求數(shù)列從第幾項(xiàng)起,后面的項(xiàng)都滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年大豐調(diào)研) (16分)
已知函數(shù)(其中) ,
點(diǎn)從左到右依次是函數(shù)圖象上三點(diǎn),且.
(Ⅰ) 證明: 函數(shù)在上是減函數(shù);
(Ⅱ)求證:是鈍角三角形;
(Ⅲ) 試問,能否是等腰三角形?若能,求面積的最大值;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年大豐調(diào)研) (14分)
如圖,已知空間四邊形中,,是的中點(diǎn).
求證:(1)平面CDE;
(2)平面平面.
(3)若G為的重心,試在線段AE上確定一點(diǎn)F,使得GF平面CDE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com