20.若復數(shù)z=$\frac{2}{1-i}$,其中i為虛數(shù)單位,則$\overline{z}$=( 。
A.1+iB.1-iC.-1+iD.-1-i

分析 根據(jù)復數(shù)的四則運算先求出z,然后根據(jù)共軛復數(shù)的定義進行求解即可.

解答 解:∵z=$\frac{2}{1-i}$=$\frac{2(1+i)}{(1-i)(1+i)}=\frac{2(1+i)}{2}$=1+i,
∴$\overline{z}$=1-i,
故選:B

點評 本題主要考查復數(shù)的計算,根據(jù)復數(shù)的四則運算以及共軛復數(shù)的定義是解決本題的關(guān)鍵.比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.不等式組$\left\{\begin{array}{l}{x+2y≥1}\\{x-3y≤1}\\{{x}^{2}+{y}^{2}-2x≤3}\end{array}\right.$表示的平面區(qū)域的面積為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在等差數(shù)列{an}中,若an=8-3n.
(1)求{an}前n項之和Sn;
(2)求數(shù)列{|an|}的前10項之和T10;
(3)求數(shù)列{|an|}的前n項之和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.若無窮數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,則稱{an}具有性質(zhì)P.
(1)若{an}具有性質(zhì)P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c5=1;b5=c1=81,an=bn+cn,判斷{an}是否具有性質(zhì)P,并說明理由;
(3)設(shè){bn}是無窮數(shù)列,已知an+1=bn+sinan(n∈N*),求證:“對任意a1,{an}都具有性質(zhì)P”的充要條件為“{bn}是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在50瓶飲料中,有3瓶已經(jīng)過期,從中任取一瓶,取到已過期飲料的概率是$\frac{3}{50}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(6,-4),若$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow$),則實數(shù)t的值為-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知(x+1)2(x+2)2011=a0+a1(x+2)+a2(x+2)2+…+a2013(x+2)2013,求$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2013}}{{2}^{2013}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}的通項公式an=(-1)n(5n-3),n∈N*,求數(shù)列的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖,點列{An}、{Bn}分別在某銳角的兩邊上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q(mào)表示點P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則(  )
A.{Sn}是等差數(shù)列B.{Sn2}是等差數(shù)列C.{dn}是等差數(shù)列D.{dn2}是等差數(shù)列

查看答案和解析>>

同步練習冊答案