【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應相同的是(
A.眾數(shù)
B.平均數(shù)
C.中位數(shù)
D.標準差

【答案】D
【解析】解:A樣本數(shù)據(jù):82,84,84,86,86,86,88,88,88,88.
B樣本數(shù)據(jù)84,86,86,88,88,88,90,90,90,90
眾數(shù)分別為88,90,不相等,A錯.
平均數(shù)86,88不相等,B錯.
中位數(shù)分別為86,88,不相等,C錯
A樣本方差S2= [(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,標準差S=2,
B樣本方差S2= [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,標準差S=2,D正確
故選D.
利用眾數(shù)、平均數(shù)、中位標準差的定義,分別求出,即可得出答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產甲、乙兩種產品,已知生產每噸甲、乙兩種產品所需煤、電力、勞動力、獲得利潤及每天資源限額(量大供應量)如下表所示:

資源\消耗量\產品

甲產品(每噸)

乙產品(每噸)

資源限額(每天)

煤(t)

9

4

360

電力(kwh)

4

5

200

勞動力(個)

3

10

300

利潤(萬元)

6

12

問:每天生產甲、乙兩種產品各多少噸,獲得利潤總額最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點E,AB=2AC

(1)求證:BE=2AD;
(2)當AC=3,EC=6時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.

(1)若函數(shù)上的極小值不大于,求的取值范圍.

(2)設,證明: 上的最小值為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用0,1,2,3,4,5這六個數(shù)字:
(1)能組成多少個無重復數(shù)字的四位偶數(shù)?
(2)能組成多少個無重復數(shù)字且為5的倍數(shù)的五位數(shù)?
(3)能組成多少個無重復數(shù)字且比1325大的四位數(shù)?(以上各問均用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小麗今天晚自習準備復習歷史、地理或政治中的一科,她用數(shù)學游戲的結果來決定選哪一科,游戲規(guī)則是:在平面直角坐標系中,以原點為起點,再分別以, , , 這5個點為終點,得到5個向量,任取其中兩個向量,計算這兩個向量的數(shù)量積,若,就復習歷史,若,就復習地理,若,就復習政治.

(1)寫出的所有可能取值;

(2)求小麗復習歷史的概率和復習地理的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下四個命題:

1命題,使得,則,都有;

2)已知函數(shù)f(x)|log2x|,abf(a)f(b)ab1;

3若平面α內存在不共線的三點到平面β的距離相等,則平面α平行于平面β;

4已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關于點對稱

其中真命題的序號為______________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5 不等式選講

已知函數(shù).

(1)若不等式的解集為,求實數(shù)的值;

(2)在(1)的條件下,若,使得,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案