已知sinα=2cosα,則
2sin2α+1
sin2α
的值為
 
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:利用同角的三角函數(shù)的關(guān)系式進(jìn)行化簡(jiǎn),代入進(jìn)行求解即可.
解答: 解:∵sinα=2cosα,
2sin2α+1
sin2α
=
2sin2α+sin2α+cos2α
2sinαcosα
=
3sin2α+cos2α
2sinαcosα
=
3(2cosα)2+cos2α
2×2cosα•cosα
=
12+1
4
=
13
4
,
故答案為:
13
4
點(diǎn)評(píng):本題主要考查三角函數(shù)的化簡(jiǎn)和求值,利用同角的三角函數(shù)的關(guān)系是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意n∈N*,都有Sn+an=2n成立.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an+1-an,xn=
1
1+bn
+
1
1-bn+1
,若記數(shù)列{an}的前n項(xiàng)和為Tn,求證:Tn>2n-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)D是△ABC邊BC上的點(diǎn),
BD
=2
DC
,過(guò)D分別作直線交AB,AC于E,F(xiàn)兩點(diǎn),若
AE
AB
AF
AC
(λ>0,μ>0),則λ+2μ的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax2-2x-1  x≥0
x2+bx+c  x<0
為偶函數(shù),直線y=x+m與函數(shù)y=f(x)的圖象有四個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,則圓x2+y2=2上的點(diǎn)到曲線ρcosθ+ρsinθ=4(ρ,θ∈R)的最短距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|1-x2|
1+|x|
,若方程f(x-1)=a有且僅有三個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)M(-3,-
3
2
)且被圓x2+y2=25截得弦長(zhǎng)為8的直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
m
=(1,0),
n
=(0,1),若向量
a
滿足|
a
-2
m
|+|
a
-
n
|=
5
,則|
a
+
n
|的取值范圍是(  )
A、[
1
2
,
2
]
B、[
3
3
,
3
]
C、[
4
5
5
,
5
]
D、[
5
,
6
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z滿足z(1+i)=1+
3
i,則z的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案