【題目】設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(x)=ex﹣f(0)x+x2(e是自然對(duì)數(shù)的底數(shù)).
(1)求f(0)和f′(1)的值;
(2)若g(x)=x2+a與函數(shù)f(x)的圖象在區(qū)間[﹣1,2]上恰有2兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

【答案】解:(1)∵f(x)=ex﹣f(0)x+x2 ,
∴f′(x)=ex﹣f(0)+x,
∴f′(1)=f′(1)﹣f(0)+1,
∴f(0)=1,
∴f(x)=ex﹣x+x2 ,
∴f(0)=f′(1)﹣0+0,
∴f′(1)=1.
(2)由(1)可得:f(x)=﹣x+x2 ,
由g(x)=x2+a=f(x),化為a=﹣x=h(x),x∈[﹣1,2].
∴h′(x)==,
令h′(x)>0,解得1<x<2,此時(shí)函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得﹣1<x<1,此時(shí)函數(shù)h(x)單調(diào)遞減.
∴當(dāng)x=1時(shí),函數(shù)h(x)取得最小值,h(1)=0.而h(﹣1)=,h(2)=e﹣2.
∵g(x)=x2+a與函數(shù)f(x)的圖象在區(qū)間[﹣1,2]上恰有2兩個(gè)不同的交點(diǎn),
∴0<a<e﹣2.
∴實(shí)數(shù)a的取值范圍是(0,e﹣2).
【解析】(1)由f(x)=ex﹣f(0)x+x2 , 可得f′(x)=ex﹣f(0)+x,令x=1,可得f(0),進(jìn)而得到f′(1).
(2)g(x)=x2+a與函數(shù)f(x)的圖象在區(qū)間[﹣1,2]上恰有2兩個(gè)不同的交點(diǎn)y=a與h(x)=﹣x在x∈[﹣1,2]上有兩個(gè)不同交點(diǎn).利用導(dǎo)數(shù)研究函數(shù)h(x)的單調(diào)性極值與最值,結(jié)合圖象即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,ABCD,CD=2,△ABC是邊長(zhǎng)為3的等邊三角形.

(1)求AD;

(2)求sinDAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(Ⅰ)求證:;

(Ⅱ)求證:;

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一個(gè)代數(shù)式,滿足所求式?若能,請(qǐng)直接寫(xiě)出該代數(shù)式;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,四邊形為矩形,的中點(diǎn),的中點(diǎn).

(1)求證:

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢(shì):

下列敘述錯(cuò)誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好

D. 總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如圖.記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.

(1)在乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的2個(gè)均成績(jī)優(yōu)秀的概率;

(2)由以上統(tǒng)計(jì)數(shù)據(jù)作出列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).

0.400

0.250

0.150

0.100

0.050

0.025

0.708

1.323

2.072

2.706

3.841

5.024

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,在直角梯形中,,,, 為線段 的中點(diǎn)

(1)求證:平面平面

(2)在線段 上是否存在點(diǎn) ,使得平面 ?若存在,求出點(diǎn) 的位置;若不存在,請(qǐng)說(shuō)明理由

(3)若中點(diǎn),,,,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, 底面, 是棱的中點(diǎn),

.

(1)求證: 平面;

(2)如果是棱上一點(diǎn),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案