8.湛江成功申辦2014年廣東省第十四屆運動會.為做好承辦工作,決定選拔3名專業(yè)人士加入組委會.經(jīng)過初選確定4男2女為候選人,每位候選人當選的機會相等.記ξ為女專業(yè)人士當選人數(shù).
(1)求ξ=0的概率; 
(2)求ξ的分布列及Eξ.

分析 (1)利用P(ξ=0)=$\frac{{∁}_{4}^{3}}{{∁}_{6}^{3}}$,即可得出.
(2)ξ的取值為0、1、2.利用P(ξ=k)=$\frac{{∁}_{4}^{3-k}{∁}_{2}^{k}}{{∁}_{6}^{3}}$,即可得出.

解答 解:(1)P(ξ=0)=$\frac{{∁}_{4}^{3}}{{∁}_{6}^{3}}$=$\frac{1}{5}$;
(2)ξ的取值為0、1、2.利用P(ξ=k)=$\frac{{∁}_{4}^{3-k}{∁}_{2}^{k}}{{∁}_{6}^{3}}$.
可得P(ξ=0)=$\frac{1}{5}$,P(ξ=1)=$\frac{3}{5}$,P(ξ=2)=$\frac{1}{5}$.
ξ的分布列為

ξ012
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
∴Eξ=0+1×$\frac{3}{5}$+2×$\frac{1}{5}$=1.

點評 本題考查了超幾何分布列的概率計算公式及其數(shù)學期望,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2016-2017學年安徽六安一中高一上國慶作業(yè)二數(shù)學試卷(解析版) 題型:解答題

對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足:

①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);

②當定義域是[m,n]時,f(x)的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.

(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.

(2)求證:函數(shù)不存在“和諧區(qū)間”.

(3)已知:函數(shù)(a∈R,a≠0)有“和諧區(qū)間”[m,n],當a變化時,求出n﹣m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在一個幾何體的三視圖中,正視圖與俯視圖如右圖所示,則相應的側視圖可以為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若函數(shù)f(x)是定義域D內(nèi)的某個區(qū)間I上的增函數(shù),且$F(x)=\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)是I上的“單反減函數(shù)”,已知$f(x)=lnx,g(x)=2x+\frac{2}{x}+alnx(a∈R)$(1)判斷f(x)在(0,1]上不是(填是或不是)“單反減函數(shù)”;  (2)若g(x)是[1,+∞)上的“單反減函數(shù)”,則實數(shù)a的取值范圍為[0,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設平面直角坐標系的原點為O,直線l的方程為$\left\{\begin{array}{l}{x=2-t}\\{y=\sqrt{3}+t}\end{array}\right.$(t為參數(shù)),以O為極點,x軸正方向為極軸正方向建立極坐標系,兩坐標系的單位長度相等.動點M(ρ,θ)(ρ>0)且ρ=4cos(θ-$\frac{π}{3}$).
(1)求直角坐標系下點M的軌跡C;
(2)求直線l被C截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.袋中裝有形狀、大小完全相同的五個乒乓球,分別標有數(shù)字1,2,3,4,5.現(xiàn)每次從中任意抽取一個,取出后不再放回.
(Ⅰ)若抽取三次,求前兩個乒乓球所標數(shù)字之和為偶數(shù)的條件下,第三個乒乓球為奇數(shù)的概率;
(Ⅱ)若不斷抽取,直至取出標有偶數(shù)的乒乓球為止,設抽取次數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某校對數(shù)學、物理兩科進行學業(yè)水平考前輔導,輔導后進行測試,按照成績(滿分均為100分)劃分為合格(成績大于或等于70分)和不合格(成績小于70分).現(xiàn)隨機抽取兩科各100名學生的成績統(tǒng)計如下:
成績(單位:分)[50,60)[60,70)[70,80)[80,90)[90,100]
數(shù)學81240328
物理71840296
(1)試分別估計該校學生數(shù)學、物理合格的概率;
(2)設數(shù)學合格一人可以贏得4小時機器人操作時間,不合格一人則減少1小時機器人操作時間;物理合格一人可以贏得5小時機器人操作時間,不合格一人則減少2小時機器人操作時間.在(1)的前提下,
(i)記X為數(shù)學一人和物理一人共同贏得的機器人操作時間(單位:小時)總和,求隨機變量X的分布列和數(shù)學期望;
(ii)隨機抽取4名學生,求這四名學生物理考前輔導后進行測試所贏得的機器人操作時間不少于13小時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,△AOB為等腰直角三角形,OA=1,OC為斜邊AB的高,點P在射線OC上,則$\overrightarrow{AP}•\overrightarrow{OP}$的最小值為(  )
A.-1B.-$\frac{1}{8}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.一個幾何體的三視圖如圖所示,則這個幾何體的表面積為18.

查看答案和解析>>

同步練習冊答案