1.如圖,某數(shù)學(xué)興趣小組為了測(cè)量西安大雁塔高AB,選取與塔底B在同一水平面
內(nèi)的兩個(gè)測(cè)點(diǎn)C與D.測(cè)得∠BCD=105°,∠BDC=45°,CD=26.4m,并在C點(diǎn)測(cè)得塔頂A的仰角為60°,則塔高AB=64.68m.($\sqrt{6}$≈2.45,結(jié)果精確到0.01).

分析 先在△BCD中利用正弦定理計(jì)算BC,再在△ABC中求出AB.

解答 解:在△BCD中,∠CBD=180°-45°-105°=30°,
由正弦定理得$\frac{BC}{sin∠BDC}=\frac{CD}{sin∠CBD}$,即$\frac{BC}{\frac{\sqrt{2}}{2}}=\frac{26.4}{\frac{1}{2}}$,解得BC=26.4×$\sqrt{2}$,
在Rt△ABC中,∵tan∠ACB=$\frac{AB}{BC}$=$\sqrt{3}$,
∴AB=$\sqrt{3}$BC=26.4×$\sqrt{6}$≈64.68.
故答案為:64.68.

點(diǎn)評(píng) 本題考查了解三角形的實(shí)際應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{2^n}{{{S_n}{S_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,已知函數(shù)y=2kx(k>0)與函數(shù)y=x2的圖象所圍成的陰影部分的面積為$\frac{32}{3}$,則實(shí)數(shù)k的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x|x2-8x+12≤0},B={x|x≥5},則A∩(∁RB)=( 。
A.[5,6]B.[2,5]C.[2,5)D.(-∞,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$,則x+2y的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)P為雙曲線${x^2}-\frac{y^2}{15}=1$右支上一點(diǎn),M,N分別是圓(x+4)2+y2=4和(x-4)2+y2=1上的點(diǎn),設(shè)|PM|-|PN|的最大值和最小值分別為m,n,則|m-n|=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD為梯形,CD∥AB,AB=2CD,AC交BD于O,銳角△PAD所在平面⊥底面ABCD,PA⊥BD,點(diǎn)Q在側(cè)棱PC上,且PQ=2QC.
求證:(1)PA∥平面QBD;
(2)BD⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=$\sqrt{-x}+\sqrt{x(x+1)}$的定義域?yàn)閧x|x≤-1或x=0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知常數(shù)p>0,數(shù)列{an}滿足an+1=|p-an|+2an+p,n∈N*.
(1)若a1=-1,p=1,
①求a4的值;
②求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若數(shù)列{an}中存在三項(xiàng)ar,as,at(r,s,t∈N*,r<s<t)依次成等差數(shù)列,求$\frac{{a}_{1}}{p}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案