4.若函數(shù)f(x)=x2+bx+c滿(mǎn)足f(-3)=f(1),則 ( 。
A.f(1)>c>f(-1)B.f(1)<c<f(-1)C.c>f(-1)>f(1)D.c<f(-1)<f(1)

分析 利用f(-3)=f(1),提出二次函數(shù)的對(duì)稱(chēng)軸,結(jié)合開(kāi)口方向,判斷選項(xiàng)即可.

解答 解:函數(shù)f(x)=x2+bx+c,開(kāi)口向上,滿(mǎn)足f(-3)=f(1),函數(shù)的對(duì)稱(chēng)軸為:x=-1.
x∈[-1,+∞)函數(shù)是增函數(shù).
x=-1時(shí)函數(shù)取得最小值.
f(0)=c.
所以:f(1)>c>f(-1).
故選:A.

點(diǎn)評(píng) 本題考查二次函數(shù)的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=cos(x+$\frac{π}{4}$)sinx,則函數(shù)f(x)的圖象(  )
A.最小正周期為T(mén)=2πB.關(guān)于點(diǎn)($\frac{π}{8}$,-$\frac{\sqrt{2}}{4}$)對(duì)稱(chēng)
C.在區(qū)間(0,$\frac{π}{8}$)上為減函數(shù)D.關(guān)于直線(xiàn)x=$\frac{π}{8}$對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.給出以下命題:
①雙曲線(xiàn)$\frac{y^2}{2}$-x2=1的漸近線(xiàn)方程為y=±$\sqrt{2}$x;
②命題P:?x∈R+,sinx+$\frac{1}{sinx}$≥1是真命題;
③已知線(xiàn)性回歸方程為$\widehaty$=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
則正確命題的序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.對(duì)實(shí)數(shù)a和b,定義運(yùn)算“⊕”:a⊕b=$\left\{\begin{array}{l}a,a-b≤1\\ b,a-b>1\end{array}$.若函數(shù)f(x)=(x2-2)⊕(x-x2)-c,x∈R有兩個(gè)零點(diǎn),則實(shí)數(shù)c的取值范圍為$({-∞,-2}]∪({-1,-\frac{3}{4}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=lnx+3x-10的零點(diǎn)所在的大致范圍是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知全集U=R,集合A={x|x<-4,或x>2},B={x|-1≤2x-1-2≤6}.
(1)求A∩B、(∁UA)∪(∁UB);
(2)若集合M={x|2k-1≤x≤2k+1}是集合A的子集,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,四邊形ABCD的四個(gè)頂點(diǎn)在半徑為2的圓O上,若∠BAD=$\frac{π}{3}$,CD=2,則BC=( 。
A.2B.4C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)Sn為數(shù)列{an}的前項(xiàng)和,已知a1≠0,2an-a1=S1•Sn,則數(shù)列{nan}的前n項(xiàng)和為(n-1)×2n+1.n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.各項(xiàng)均為正數(shù)的等差數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)a1=3,數(shù)列{bn} 為等比數(shù)列,首項(xiàng)b1=1,且b2S2=64,b3S3=960.
(Ⅰ)求an和bn;
(Ⅱ)設(shè)f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$(n∈N*),求f(n)最大值及相應(yīng)的n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案