【題目】持續(xù)高溫使漳州市多地出現(xiàn)氣象干旱,城市用水緊張,為了宣傳節(jié)約用水,某人準(zhǔn)備在一片扇形區(qū)域(如圖3)上按照?qǐng)D4的方式放置一塊矩形ABCD區(qū)域宣傳節(jié)約用水,其中頂點(diǎn)B,C在半徑ON上,頂點(diǎn)A在半徑OM上,頂點(diǎn)D在 上,∠MON= ,ON=OM=10,m,設(shè)∠DON=θ,矩形ABCD的面積為S.
(Ⅰ)用含θ的式子表示DC,OB的長(zhǎng)‘
(Ⅱ)若此人布置1m2的宣傳區(qū)域需要花費(fèi)40元,試將S表示為θ的函數(shù),并求布置此矩形宣傳欄最多要花費(fèi)多少元錢?(精確到0.01)
(參考數(shù)據(jù): ≈1.732, ≈1.414)

【答案】解:(Ⅰ)在△ODC中DC=10sinθ,在△OAB中,OB=10 sinθ;

(Ⅱ)在△ODC中OC=10cosθ,從而S=BC×CD=100(cosθsinθ﹣ sin2θ)(0<θ<

由S′=100(﹣sin2θ+cos2θ﹣2 sinθcosθ)=0得tan2θ= ,

由0<θ< ,得θ= ,易得θ= 時(shí),S的最大值為100(1﹣ )≈13.4.

此人布置1m2的宣傳區(qū)域需要花費(fèi)40元,

∴布置此矩形宣傳欄最多要花費(fèi)13.4×40=536元錢.


【解析】(Ⅰ)直接在三角形中利用三角函數(shù)可以表示DC、OB的長(zhǎng);(Ⅱ)S=BC×CD,求出相應(yīng)函數(shù),再利用導(dǎo)數(shù)方法研究函數(shù)的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)O為線段BD的中點(diǎn),設(shè)點(diǎn)P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是(
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
(I)求證:平面PAC⊥平面PBC;
(II)若AC=1,PA=1,求圓心O到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))在處的切線與軸平行.

(1)討論上的單調(diào)性;

(2)設(shè), ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程為 =1(a>0,b>0),其右焦點(diǎn)為F(4,0),過(guò)點(diǎn)F的直線交橢圓與A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則橢圓的方程為(
A. =1
B. =1
C. + =1
D. =1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2所示五棱錐P﹣ABFED,且AP= ,
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x<﹣2或x>0},B={x|( x≥3} (Ⅰ)求A∪B
(Ⅱ)若集合C={x|a<x≤a+1},且A∩C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行“青少年禁毒”知識(shí)競(jìng)賽網(wǎng)上答題,高二年級(jí)共有500名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了100名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì).請(qǐng)你解答下列問(wèn)題:

分組

頻數(shù)

頻率

[60,70)

10

0.1

[70,80)

22

0.22

[80,90)

a

0.38

[90,100]

30

c

合計(jì)

100

d


(1)根據(jù)下面的頻率分布表和頻率分布直方圖,求出a+d和b+c的值;
(2)若成績(jī)不低于90分的學(xué)生就能獲獎(jiǎng),問(wèn)所有參賽學(xué)生中獲獎(jiǎng)的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題中,其中正確的個(gè)數(shù)為( ) ①命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2=0”;
②“ ”是“cos2α=0”的充分不必要條件;
③若命題 ,則p:x∈R,x2+x+1=0;
④若p∧q為假,p∨q為真,則p,q有且僅有一個(gè)是真命題.
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案