(本小題滿分12分)如圖,在多面體ABCDE中,AE⊥面ABC,DB//AE,且AC=AB=BC=AE=1,BD=2,F(xiàn)為CD中點(diǎn)。
(1)求證:EF⊥平面BCD;
(2)求多面體ABCDE的體積;
(3)求平面ECD和平面ACB所成的銳二面角的余弦值。
解:(Ⅰ)找BC中點(diǎn)G點(diǎn),連接AG,F(xiàn)G
F,G分別為DC,BC中點(diǎn)
∴ ∴ //AG
面,∥ DB⊥平面ABC
又∵DB平面
平面ABC⊥平面
又∵G為 BC中點(diǎn)且AC=AB=BC
AG⊥BC
AG⊥平面
平面 ……………………….4分
(Ⅱ)過C作CH⊥AB,則CH⊥平面ABDE且CH=
…………8分
(Ⅲ)以H為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系
則
平面角ECD和平面ACB所成的銳二面角的余弦值
法二(略解):延長DE交BA延長線與R點(diǎn),連接CE,易知AR="BA=1," ∠RCB=
平面角ECD和平面ACB所成的銳二面角的余弦值
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是矩形,平面,且,點(diǎn)是棱的中點(diǎn),點(diǎn)在棱上移動.
(Ⅰ)當(dāng)點(diǎn)為的中點(diǎn)時,試判斷直線與平面的關(guān)系,并說明理由;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線段PD上存在點(diǎn)E使得BE⊥CE,求線段AD的取值范圍,并求當(dāng)線段PD上有且只
有一個點(diǎn)E使得BE⊥CE時,二面角E—BC—A正切值的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知中∠ACB=90°,AS=BC=1,AC=2,SA⊥面ABC,AD⊥SC于D,
(1)求證: AD⊥面SBC;
(2)求二面角A-SB-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱的點(diǎn)是( )
A.(-2,3,-1) | B.(-2,-3,-1) | C.(2,-3,-1) | D.(-2,3,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四邊形ABCD是矩形,P∉平面ABCD,過BC作平面BCFE交AP于E,交DP于F.求證:四邊形BCFE是梯形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別在A1D,AC上,且A1E=A1D,AF=AC,則( )
A.EF至多與A1D,AC之一垂直 |
B.EF⊥A1D,EF⊥AC |
C.EF與BD1相交 |
D.EF與BD1異面 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com