(2012•天津)已知函數(shù)f(x)=
1
3
x3+
1-a
2
x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內恰有兩個零點,求a的取值范圍;
(3)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t).記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.
分析:(1)求導函數(shù),令f′(x)>0,可得函數(shù)的遞增區(qū)間;令f′(x)<0,可得單調遞減區(qū)間;
(2)由(1)知函數(shù)在區(qū)間(-2,-1)內單調遞增,在(-1,0)內單調遞減,從而函數(shù)在(-2,0)內恰有兩個零點,由此可求a的取值范圍;
(3)a=1時,f(x)=
1
3
x3-x-1
,由(1)知,函數(shù)在(-3,-1)上單調遞增,在(-1,1)上單調遞減,在(1,2)上單調遞增,再進行分類討論:①當t∈[-3,-2]時,t+3∈[0,1],-1∈[t,t+3],f(x)在[t,-1]上單調遞增,在[-1,t+3]上單調遞減,因此函數(shù)在[t,t+3]上的最大值為M(t)=f(-1)=-
1
3
,而最小值m(t)為f(t)與f(t+3)中的較小者,從而可得g(t)在[-3,-2]上的最小值;②當t∈[-2,-1]時,t+3∈[1,2],-1,1∈[t,t+3],比較f(-1),f(1),f(t),f(t+3)的大小,從而可確定函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.
解答:解:(1)求導函數(shù)可得f′(x)=(x+1)(x-a),令f′(x)=0,可得x1=-1,x2=a>0
令f′(x)>0,可得x<-1或x>a;令f′(x)<0,可得-1<x<a
故函數(shù)的遞增區(qū)間為(-∞,-1),(a,+∞),單調遞減區(qū)間為(-1,a,)
(2)由(1)知函數(shù)在區(qū)間(-2,-1)內單調遞增,在(-1,0)內單調遞減,從而函數(shù)在(-2,0)內恰有兩個零點,
f(-2)<0
f(-1)>0
f(0)<0
,∴
-
2
3
-a<0
1
6
-
a
2
>0
-a<0
,∴0<a<
1
3

∴a的取值范圍為(0,
1
3
)

(3)a=1時,f(x)=
1
3
x3-x-1
,由(1)知,函數(shù)在(-3,-1)上單調遞增,在(-1,1)上單調遞減,在(1,2)上單調遞增
①當t∈[-3,-2]時,t+3∈[0,1],-1∈[t,t+3],f(x)在[t,-1]上單調遞增,在[-1,t+3]上單調遞減
因此函數(shù)在[t,t+3]上的最大值為M(t)=f(-1)=-
1
3
,而最小值m(t)為f(t)與f(t+3)中的較小者
由f(t+3)-f(t)=3(t+1)(t+2)知,當t∈[-3,-2]時,f(t)≤f(t+3),故m(t)=f(t),所以g(t)=f(-1)-f(t)
而f(t)在[-3,-2]上單調遞增,因此f(t)≤f(-2)=-
5
3
,所以g(t)在[-3,-2]上的最小值為g(-2)=-
1
3
-(-
5
3
)=
4
3

②當t∈[-2,-1]時,t+3∈[1,2],-1,1∈[t,t+3],下面比較f(-1),f(1),f(t),f(t+3)的大小.
由f(x)在[-2,-1],[1,2]上單調遞增,有
f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2)
∵f(1)=f(-2)=-
5
3
,f(-1)=f(2)=-
1
3

∴M(t)=f(-1)=-
1
3
,m(t)=f(1)=-
5
3

∴g(t)=M(t)-m(t)=
4
3

綜上,函數(shù)g(t)在區(qū)間[-3,-1]上的最小值為
4
3
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調性,考查函數(shù)的最值,考查分類討論的數(shù)學思想,正確求導與分類討論是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•天津)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n).則m=
-1
-1
,n=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天津)已知函數(shù)f(x)=sin(2x+
π
3
)+sin(2x-
π
3
)+2cos2x-1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-
π
4
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天津)已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
與雙曲線C2
x2
4
-
y2
16
=1
有相同的漸近線,且C1的右焦點為F(
5
,0).則a=
1
1
,b=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天津)已知函數(shù)y=
|x2-1|x-1
的圖象與函數(shù)y=kx-2的圖象恰有兩個交點,則實數(shù)k的取值范圍是
(0,1)∪(1,4)
(0,1)∪(1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天津)已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數(shù)k的最小值;
(3)證明:
n
i=1
2
2i-1
-ln(2n+1)<2
(n∈N*).

查看答案和解析>>

同步練習冊答案