【題目】設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積.

(1)求點(diǎn)的軌跡方程;

(2)在點(diǎn)的軌跡上有一點(diǎn)且點(diǎn)軸的上方, ,求的范圍.

【答案】(1);(2).

【解析】試題分析:(1)設(shè)點(diǎn)的坐標(biāo)為,表示出兩直線的斜率,利用斜率之積等于建立方程,化簡(jiǎn)即可求出軌跡方程;(2)點(diǎn)的坐標(biāo)為,利用斜率公式及夾角公式,可得的關(guān)系,再結(jié)合點(diǎn)在橢圓上消元后根據(jù)橢圓的范圍建立不等關(guān)系,即可解出的范圍.

試題解析:設(shè)點(diǎn)的坐標(biāo)為

因?yàn)辄c(diǎn)坐標(biāo)為,所以直線的斜率

同理,直線的斜率

由已知有

化簡(jiǎn),得點(diǎn)的軌跡方程為

方法一:設(shè)點(diǎn)的坐標(biāo)為,過點(diǎn)垂直于軸,垂足為,

因?yàn)辄c(diǎn)的坐標(biāo)為在點(diǎn)的軌跡上,所以

,

因?yàn)?/span> ,

.

所以解得.

方法二:設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)分別為

直線的斜率,直線的斜率

所以(1)

又由于點(diǎn)的坐標(biāo)為為在點(diǎn)的軌跡上,所以

,代入(1)得

.

因?yàn)?/span>, ,

.

所以解得.

方法三設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)分別為

直線的斜率,直線的斜率

所以(1)

又由于點(diǎn)的坐標(biāo)為為在點(diǎn)的軌跡上,所以

代入(1)得, ,

, ,

.

所以解得.

方法四:設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)分別為

直線的斜率,直線的斜率

所以(1)

代入(1)得, , .

因?yàn)?/span> ,

.

所以解得.

方法五設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)分別為

直線的斜率,直線的斜率

.

所以解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)滿足以下條件:①定義在正實(shí)數(shù)集上;②f( )=2;③對(duì)任意實(shí)數(shù)t,都有f(xt)=tf(x)(x∈R+).
(1)求f(1),f( )的值;
(2)求證:對(duì)于任意x,y∈R+ , 都有f(xy)=f(x)+f(y);
(3)若不等式f(loga(x﹣3a)﹣1)﹣f(﹣ )≥﹣4對(duì)x∈[a+2,a+ ]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)M,N分別是正方體ABCD﹣A1B1C1D1的棱BB1和B1C1的中點(diǎn),則MN和CD1所成角的大小為(
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,設(shè)命題p:指數(shù)函數(shù)y=ax(a>0且a≠1)在R上單調(diào)遞增;命題q:函數(shù)y=ln(ax2﹣ax+1)的定義域?yàn)镽,若“p且q”為假,“p或q”為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線y2=2px(p>0)交于A,B兩點(diǎn),且OA⊥OB,OD⊥AB交AB于點(diǎn)D(不為原點(diǎn)).
(Ⅰ)求點(diǎn)D的軌跡方程;
(Ⅱ)若點(diǎn)D坐標(biāo)為(2,1),求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的對(duì)稱軸x=﹣2,f(x)的圖象被x軸截得的弦長(zhǎng)為2 ,且滿足f(0)=1.
(1)求f(x)的解析式;
(2)若f(( x)>k,對(duì)x∈[﹣1,1]恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知上的偶函數(shù),當(dāng)時(shí), .

1)當(dāng)時(shí),求的解析式;

2)當(dāng)時(shí),試比較的大小;

3)求最小的整數(shù),使得存在實(shí)數(shù),對(duì)任意的,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題: ①函數(shù) 的一條對(duì)稱軸是x= ;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)( ,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若 ,則x1﹣x2=kπ,其中k∈Z;
⑤函數(shù)f(x)=sinx+2|sinx|,x∈[0,2π]的圖象與直線y=k有且僅有兩個(gè)不同的交點(diǎn),則k的取值范圍為(1,3).
以上五個(gè)命題中正確的有(填寫所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案