【題目】在四棱錐的底面中,∥,,平面,是的中點,且
(1)求證:∥平面;
(2)求二面角的余弦值;
(3)在線段內是否存在點,使得?若存在指出點的位置,若不存在,請說明理由.
【答案】(1)證明見解析; (2); (3)線段上存在中點,使得.
【解析】
(1)連接,證得四邊形為平行四邊形,得到,利用線面平行的判定定理,即可證得∥平面;
(2)建立空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解;
(3)假設存在,設出點E的坐標,通過時,向量的數(shù)量積為0,建立方程,即可求解.
(1)連接,因為是的中點,,
所以,且,
所以四邊形為平行四邊形,所以,
又因為平面,平面,
所以∥平面;
(2)由(1)可知,四邊形也是平行四邊形,
又由,所以四邊形是正方形,所以,
又由平面,所以以O為原點,所在的直線分別為軸,建立如圖所示的空間直角坐標系,則,
可得,
設平面的一個法向量為,則,可取,
設平面的一個法向量為,則,可取,
設二面角的平面角為,
即二面角的余弦值為.
(3)假設線段上存在點E,且滿足,
設,則,所以,即,
所以,
又由,可得,
所以,解得,
即線段上存在中點,使得.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線:.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設曲線與直線的交點為,,是曲線上的動點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,a=2,_______,求△ABC的周長l的范圍.
在①(﹣cos,sin),(cos,sin),且,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x),f(A)
注:這三個條件中任選一個,補充在上面問題中并對其進行求解.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知自變量為的函數(shù).其中,為自然對數(shù)的底,.
(Ⅰ)求函數(shù)與的單調區(qū)間,并且討論函數(shù)的單調性;
(Ⅱ)已知,求證:
(ⅰ)方程有兩個根,;
(ⅱ)若(。┲械膬蓚根滿足,,則,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖兩個同心球,球心均為點,其中大球與小球的表面積之比為3:1,線段與是夾在兩個球體之間的內弦,其中兩點在小球上,兩點在大球上,兩內弦均不穿過小球內部.當四面體的體積達到最大值時,此時異面直線與的夾角為,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】依據(jù)某地某條河流8月份的水文觀測點的歷史統(tǒng)計數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當?shù)氐牡刭|構造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.
試估計該河流在8月份水位的中位數(shù);
(1)以此頻率作為概率,試估計該河流在8月份發(fā)生1級災害的概率;
(2)該河流域某企業(yè),在8月份,若沒受1、2級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.
現(xiàn)此企業(yè)有如下三種應對方案:
方案 | 防控等級 | 費用(單位:萬元) |
方案一 | 無措施 | 0 |
方案二 | 防控1級災害 | 40 |
方案三 | 防控2級災害 | 100 |
試問,如僅從利潤考慮,該企業(yè)應選擇這三種方案中的哪種方案?說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com