【題目】己知正實數(shù)、滿足,則的最小值是______.
【答案】10
【解析】
由得,,設(shè)直線l的方程為,則,,都在直線l上,作出的與斜邊AB相切的旁切圓,設(shè)圓心,由旁切圓的性質(zhì)可知,圓P的周長,根據(jù)幾何關(guān)系可得,,由此即可求得結(jié)果.
由得,,設(shè)直線l的方程為,且,,
則,,都在直線l上,如圖,
圓P是的與斜邊AB相切的旁切圓,設(shè)圓心,由旁切圓的性質(zhì)可知,
的周長,根據(jù)幾何關(guān)系可得,,
即,化簡可得,,解得或(舍去),
所以,即的最小值為10.
故答案為:10.
【點(diǎn)晴】
本題考查平面幾何的幾何關(guān)系,直角三角形旁切圓的性質(zhì),以及直線方程的應(yīng)用,著重考查轉(zhuǎn)化與化歸的能力和數(shù)形結(jié)合的思想運(yùn)用,設(shè)出直線AB的截距式方程和作出旁切圓的圖象是解決本題的關(guān)鍵,屬難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義城為D,若滿足條件:存在,使在上的值城為(且),則稱為“k倍函數(shù)”,給出下列結(jié)論:①是“1倍函數(shù)”;②是“2倍函數(shù)”:③是“3倍函數(shù)”.其中正確的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是橢圓上的點(diǎn),,是焦點(diǎn),離心率.
(1)求橢圓的方程;
(2)設(shè),是橢圓上的兩點(diǎn),且,(是定數(shù)),問線段的垂直平分線是否過定點(diǎn)?若過定點(diǎn),求出此定點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費(fèi)和年銷售量()的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | ||||||
年宣傳費(fèi)(萬元) | ||||||
年銷售量(噸) |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬元)與年銷售量(噸)之間近似滿足關(guān)系式().對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)已知這種產(chǎn)品的年利潤與,的關(guān)系為若想在年達(dá)到年利潤最大,請預(yù)測年的宣傳費(fèi)用是多少萬元?
附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知數(shù)列:1,,,3,3,3,,,,,…,,即當(dāng)()時,,記().
(1)求的值;
(2)求當(dāng)(),試用n、k的代數(shù)式表示();
(3)對于,定義集合是的整數(shù)倍,,且,求集合中元素的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,.
(1)當(dāng),,求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在區(qū)間上的最小值為,求實數(shù)的值;
(3)當(dāng)時,若函數(shù)恰有兩個零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)(其中).
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)求函數(shù)的反函數(shù)
(3)若兩個函數(shù)與在區(qū)間上恒滿足,則函數(shù)與在閉區(qū)間上是分離的.試判斷的反函數(shù)與在閉區(qū)間上是否分離?若分離,求出實數(shù)的取值范圍;若不分離,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com