【題目】已知函數(shù),.
(1)若,求的最大值;
(2)當(dāng)時(shí),求證:.
【答案】(1) (2)見(jiàn)解析
【解析】分析:(1)給定區(qū)間求最值需先求導(dǎo)判出在相應(yīng)區(qū)間上的單調(diào)性;
(2)構(gòu)造新函數(shù),運(yùn)用放縮進(jìn)行處理。先證,又由,,所以。
詳解:(1)解:當(dāng)時(shí),,
由,得,所以時(shí),;時(shí),,
因此的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,
的最大值為 .
(2)證明:先證,
令,
則 ,
由,與的圖象易知,存在,使得,
故時(shí),;時(shí),,
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,
所以的最大值為,
而,.
又由,,所以,
當(dāng)且僅當(dāng),取“=”成立,即.
點(diǎn)晴:導(dǎo)數(shù)是做題的工具,在解決問(wèn)題時(shí),一般首先要對(duì)題干的轉(zhuǎn)化,帶著目標(biāo)做下手,一般都是轉(zhuǎn)化成最值的問(wèn)題,然后最值的問(wèn)題都是利用單調(diào)性去解決
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離,傾斜角為的直線經(jīng)過(guò)焦點(diǎn),且與拋物線交于兩點(diǎn)、.
(1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線方程;
(2)若為銳角,作線段的中垂線交軸于點(diǎn).證明:為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),且,則下列結(jié)論中錯(cuò)誤的是( )
A.B.平面ABCD
C.三棱錐的體積為定值D.的面積與的面積相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
對(duì)定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意的都有,且對(duì)任意的都有恒成立,則稱函數(shù)為區(qū)間上的“U型”函數(shù)。
(1)求證:函數(shù)是上的“U型”函數(shù);
(2)設(shè)是(1)中的“U型”函數(shù),若不等式對(duì)一切的恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的“U型”函數(shù),求實(shí)數(shù)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí),(萬(wàn)元),每件售價(jià)為0.05萬(wàn)元,通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》規(guī)定,交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通7座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是保費(fèi)浮動(dòng)機(jī)制,保費(fèi)與上一、二、三個(gè)年度車輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
投保類型 | 浮動(dòng)因素 | 浮動(dòng)比率 |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號(hào)私家車在下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 20 | 10 | 10 | 20 | 15 | 5 |
以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問(wèn)題:
(1)某家庭有一輛該品牌車且車齡剛滿三年,記為該車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列;
(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車輛記為事故車.
①若該銷售商購(gòu)進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;
②假設(shè)購(gòu)進(jìn)一輛事故車虧損4000元,一輛非事故盈利8000元,若該銷售商一次購(gòu)進(jìn)100輛(車齡已滿三年)該品牌二手車,求其獲得利潤(rùn)的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx)(ω>0)的最小正周期是π.
(1)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)遞增區(qū)間;
(2)若f(x0),x0∈[,],求cos2x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù)
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;
(Ⅲ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅳ)設(shè)關(guān)于的函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①回歸直線過(guò)樣本點(diǎn)中心(,)
②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,平均值不變
③將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變
④在回歸方程=4x+4中,變量x每增加一個(gè)單位時(shí),y平均增加4個(gè)單位
其中錯(cuò)誤命題的序號(hào)是( )
A.①B.②C.③D.④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com