【題目】已知函數(shù).

(1)若,求的最大值;

(2)當(dāng)時,求證:.

【答案】(1) (2)見解析

【解析】分析:(1)給定區(qū)間求最值需先求導(dǎo)判出在相應(yīng)區(qū)間上的單調(diào)性;

(2)構(gòu)造新函數(shù),運(yùn)用放縮進(jìn)行處理。先證,又由,,所以。

詳解:(1)解:當(dāng)時,,

,得,所以時,時,

因此的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,

的最大值為 .

(2)證明:先證,

,

,

,的圖象易知,存在,使得

時,;時,

所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,

所以的最大值為,

.

又由,,所以,

當(dāng)且僅當(dāng),取“=”成立,即.

點晴:導(dǎo)數(shù)是做題的工具,在解決問題時,一般首先要對題干的轉(zhuǎn)化,帶著目標(biāo)做下手,一般都是轉(zhuǎn)化成最值的問題,然后最值的問題都是利用單調(diào)性去解決

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點到焦點的距離,傾斜角為的直線經(jīng)過焦點,且與拋物線交于兩點、.

1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線方程;

2)若為銳角,作線段的中垂線軸于點.證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為1,線段上有兩個動點,且,則下列結(jié)論中錯誤的是(

A.B.平面ABCD

C.三棱錐的體積為定值D.的面積與的面積相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

對定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意的都有,且對任意的都有恒成立,則稱函數(shù)為區(qū)間上的“U函數(shù)。

1)求證:函數(shù)上的“U函數(shù);

2)設(shè)是(1)中的“U函數(shù),若不等式對一切的恒成立,求實數(shù)的取值范圍;

3)若函數(shù)是區(qū)間上的“U函數(shù),求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本,當(dāng)年產(chǎn)量不足80千件時,(萬元);當(dāng)年產(chǎn)量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險條例》規(guī)定,交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通7座以下私家車投保交強(qiáng)險第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時,實行的是保費(fèi)浮動機(jī)制,保費(fèi)與上一、二、三個年度車輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如下表:

交強(qiáng)險浮動因素和浮動費(fèi)率比率表

投保類型

浮動因素

浮動比率

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故

上浮10%

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

20

10

10

20

15

5

以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)某家庭有一輛該品牌車且車齡剛滿三年,記為該車在第四年續(xù)保時的費(fèi)用,求的分布列;

(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費(fèi)高于基準(zhǔn)保費(fèi)的車輛記為事故車.

若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;

②假設(shè)購進(jìn)一輛事故車虧損4000元,一輛非事故盈利8000元,若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求其獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=4cosωxsinωx)(ω0)的最小正周期是π

1)求函數(shù)fx)在區(qū)間(0,π)上的單調(diào)遞增區(qū)間;

2)若fx0,x0[,],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù)

(Ⅰ)求值;

(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;

(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(Ⅳ)設(shè)關(guān)于的函數(shù)有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:

①回歸直線過樣本點中心(

②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,平均值不變

③將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變

④在回歸方程4x+4中,變量x每增加一個單位時,y平均增加4個單位

其中錯誤命題的序號是(  )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案