函數(shù)f(x)=log2|x-1|的圖象大致是(  )
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:對x的取值進(jìn)行討論去掉絕對值符號,轉(zhuǎn)化成對數(shù)函數(shù)的形式,再結(jié)合函數(shù)的解析式判斷單調(diào)性,結(jié)合特殊值選出圖象.
解答: 解:原函數(shù)可化為
y=log2|x-1|=
log2(x-1),x>1
log2(1-x),x<1

由復(fù)合函數(shù)的單調(diào)性知x<1時函數(shù)y=log2(1-x)單調(diào)遞減,x>1時函數(shù)y=log2(x-1)單調(diào)遞增,
且f(
3
2
)=log2(
3
2
-1)=log2
1
2
=-1
<0,
只有圖象B符合,
故選:B.
點評:“函數(shù)”是貫穿于高中數(shù)學(xué)的一條主線,函數(shù)圖象又是表述函數(shù)問題的重要工具,因此,巧妙運(yùn)用函數(shù)圖象結(jié)合函數(shù)的解析式,是解題的關(guān)鍵,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=
1
3
(x-2)2的圖象可由拋物線y=
1
3
x2
 
平移
 
個單位得到,它的頂點坐標(biāo)是
 
,對稱軸是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(x2-8x+c1)(x2-8x+c2)(x2-8x+c3)(x2-8x+c4),集合M={x|f(x)=0}={x1,x2,…,x7}⊆N*,設(shè)c1≥c2≥c3≥c4,則c1-c4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=0.84.6,b=70.8,c=log0.87,則a,b,c的大小關(guān)系是( 。
A、c<b<a
B、c<a<b
C、a<c<b
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an=
1
2
(an-1+
1
an-1
)(n≥2),試猜想這個數(shù)列的通項公式為( 。
A、an=
1
n
B、an=
1
2
(n+
1
n
C、an=n
D、an=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:函數(shù)f(x)=x2-3是偶函數(shù),且在[0,+∞)上是遞增的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個圓柱被平面所截后余下部分的三視圖,尺寸如圖所示,則它的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2
|x|-1
,則其定義域為( 。
A、[-2,2]
B、[-2,1)∪(1,2]
C、[-2,-1)∪(-1,1)∪(1,2]
D、(-2,-1)∪(-1,1)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為24cm,弧長為16πcm的弧,其所對的圓心角為α,則與α終邊相同的角的集合是
 

查看答案和解析>>

同步練習(xí)冊答案