【題目】給出下列說法:①設(shè),則“”是“”的充分不必要條件;②若,則,使得;③為等比數(shù)列,則“”是“”的充分不必要條件;④命題“,,使得”的否定形式是“,,使得 .其中正確說法的個數(shù)為( )

A.0B.1C.2D.3

【答案】B

【解析】

將“”與“”相互推導,根據(jù)能否推導的情況判斷充分、必要條件,由此判斷①的正確性.利用基本不等式等號成立的條件,判斷②的正確性. 將“”與“”相互推導,根據(jù)能否推導的情況判斷充分、必要條件,由此判斷③的正確性.根據(jù)命題的否定的知識,判斷④的正確性.

對于①,當“”時,如,結(jié)論錯誤,“”不是“”的充分條件,故①錯誤.

對于②,當時,,當且僅當時等號成立,所以,故②錯誤.

對于③,在等比數(shù)列中,當“”時,所以等比數(shù)列是單調(diào)遞增數(shù)列,所以“”.當“”時,如,不能推出“”.所以③正確.

對于④,命題“,,使得”的否定形式是“,,使得”,故④錯誤.

綜上所述,正確說法個數(shù)為個.

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,

1)求橢圓的標準方程;

2)設(shè)、是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語文、數(shù)學、外語三科為必考科目,每門科目滿分均為.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物門科目中自選門參加考試(),每門科目滿分均為.為了應對新高考,某高中從高一年級名學生(其中男生人,女生人)中,采用分層抽樣的方法從中抽取名學生進行調(diào)查,其中,女生抽取.

1)求的值;

2)學校計劃在高一上學期開設(shè)選修中的物理地理兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的名學生進行問卷調(diào)查(假定每名學生在物理地理這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據(jù)調(diào)查結(jié)果得到的一個不完整的列聯(lián)表,請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關(guān)?說明你的理由;

選擇物理

選擇地理

總計

男生

女生

總計

3)在抽取到的名女生中,按(2)中的選課情況進行分層抽樣,從中抽出名女生,再從這名女生中抽取人,設(shè)這人中選擇物理的人數(shù)為,求的分布列及期望.附:,

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0x2,0y2,且M+M的最小值為( 。

A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知平面直角坐標系,以為極點, 軸的非負半軸為極軸建立極坐標系, 點的極坐標為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點的直角坐標及曲線的直角坐標方程;

(2)若為曲線上的動點,求的中點到直線 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,且,其對角線交于點, 、是棱、上的中點.

(1)求證:面

(2)若面底面, , ,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點F到左頂點的距離為3.

1)求橢圓C的方程;

2)設(shè)O是坐標原點,過點F的直線與橢圓C交于AB兩點(A,B不在x軸上),若,延長AO交橢圓與點G,求四邊形AGBE的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自湖北武漢爆發(fā)新型冠狀病毒肺炎疫情以來,各地醫(yī)療物資缺乏,各生產(chǎn)企業(yè)紛紛加班加點生產(chǎn),某企業(yè)準備購買三臺口罩生產(chǎn)設(shè)備,型號分別為A,B,C,已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元;也可以在設(shè)備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設(shè)備時應同時購買的易耗品的件數(shù),該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)查每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.

每臺設(shè)備一個月中使用的易耗品的件數(shù)

6

7

8

頻數(shù)

型號A

30

30

0

型號B

20

30

10

型號C

0

45

15

將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨立.

1)求該單位一個月中AB,C三臺設(shè)備使用的易耗品總數(shù)超過21件(不包括21件)的概率;

2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設(shè)備時應同時購買20件還是21件易耗品?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知xy,z均為正數(shù).

1)若xy1,證明:|x+z||y+z|4xyz;

2)若,求2xy2yz2xz的最小值.

查看答案和解析>>

同步練習冊答案