8.在△ABC中,B=60°,b=2$\sqrt{6}$,a=4,則C=$\frac{5π}{12}$.

分析 利用正弦定理求出A,然后求解C的大小即可.

解答 解:在△ABC中,B=60°,b=2$\sqrt{6}$,a=4,
由正弦定理可得:sinA=$\frac{asinB}$=$\frac{4×\frac{\sqrt{3}}{2}}{2\sqrt{6}}$=$\frac{\sqrt{2}}{2}$,∵a<b,∴A<B,∴A=$\frac{π}{4}$.
C=$π-\frac{π}{3}-\frac{π}{4}$=$\frac{5π}{12}$.
故答案為:$\frac{5π}{12}$.

點評 本題考查正弦定理的應(yīng)用,三角形的邊角關(guān)系,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,⊙O中$\widehat{AB}$的中點為P,弦PC,PD分別交AB于E,F(xiàn)兩點.
(1)若∠PFB=2∠PCD,求∠PCD的大小;
(2)若EC的垂直平分線與FD的垂直平分線交于點G,證明:OG⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$,a∈R.
(I)討論f(x)的單調(diào)性;
(II)當(dāng)a=1時,證明f(x)>f′(x)+$\frac{3}{2}$對于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=acos2x+(a-1)(cosx+1),其中a>0,記|f(x)|的最大值為A.
(Ⅰ)求f′(x);
(Ⅱ)求A;
(Ⅲ)證明:|f′(x)|≤2A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在空間直角坐標(biāo)系Oxyz中,點M(1,2,3)關(guān)于x軸對稱的點N的坐標(biāo)是( 。
A.N(-1,2,3)B.N(1,-2,3)C.N(1,2,-3)D.N(1,-2,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.從-3,-2,-1,0,5,6,7這七個數(shù)中任取兩數(shù)相乘而得到積,求:
(1)積為0的概率;
(2)積為負(fù)數(shù)的概率;
(3)積為正數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.無窮數(shù)列{an}由k個不同的數(shù)組成,Sn為{an}的前n項和,若對任意n∈N*,Sn∈{2,3},則k的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.Sn為數(shù)列{an}的前n項和,已知an>0,${a}_{n}^{2}$+an=2Sn+2(n∈N*
(1)求證數(shù)列{an}是等差數(shù)列并求其通項公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,記{bn}前n項和為Tn,若4032(n+2)Tn<λ(n+1)對任意的n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}+1,x≤0}\\{lo{g}_{3}x+ax,x>0}\end{array}\right.$,若f(f(-1))>4a,則實數(shù)a的取值范圍為a<1.

查看答案和解析>>

同步練習(xí)冊答案