設(shè)m>1,在約束條件
y≥x
y≤mx
x+y≤1
 下,目標(biāo)函數(shù)z=x+5y的最大值為4,則m的值為
 
分析:根據(jù)m>1,我們可以判斷直線y=mx的傾斜角位于區(qū)間(
π
4
π
2
)上,由此我們不難判斷出滿足約束條件
y≥x
y≤mx
x+y≤1
的平面區(qū)域的形狀,再根據(jù)目標(biāo)函數(shù)Z=X+5y在直線y=mx與直線x+y=1交點(diǎn)處取得最大值,由此構(gòu)造出關(guān)于m的方程,解方程即可求出m 的取值范圍.
解答:精英家教網(wǎng)解:滿足約束條件
y≥x
y≤mx
x+y≤1
 的平面區(qū)域如下圖所示:
當(dāng)x=
1
m+1
,y=
m
m+1
時(shí),
目標(biāo)函數(shù)z=x+5y取最大值為4,即
1+5m
m+1
=4
;
解得m=3
故答案為3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是簡(jiǎn)單線性規(guī)劃的應(yīng)用,其中判斷出目標(biāo)函數(shù)Z=X+my在(
1
m+1
m
m+1
)
點(diǎn)取得最大值,并由此構(gòu)造出關(guān)于m的方程是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m>1,在約束條件
y≥x
y≤mx
x+y≤1
下,目標(biāo)函數(shù)z=x+my的最大值小于2,則m 的取值范圍為(  )
A、(1,1+
2
B、(1+
2
,+∞)
C、(1,3)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m>1,在約束條件
y≥x
y≤mx
x+y≤1
下,目標(biāo)函數(shù)z=x+5y的最大值為4,則m的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m>1,在約束條件
y≥x
y≤mx
x+y≤1
下,目標(biāo)函數(shù)Z=x+my的最大值小于2,則m的取值范圍為
(1,1+
2
(1,1+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m>1,在約束條件
y≥x
y≤mx
x+y≤1
下,目標(biāo)函數(shù)Z=x+my的最大值大于2,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案