【題目】已知橢圓的焦距與短軸長相等,長軸長為,設過右焦點F傾斜角為的直線交橢圓M于A、B兩點.
(1)求橢圓M的方程;
(2)求證:
(3)設過右焦點F且與直線AB垂直的直線交橢圓M于C、D,求四邊形ABCD面積的最小值.
【答案】(1);(2)詳見解析;(3)16
【解析】
(1)根據(jù)條件可知,再根據(jù),求解方程;
(2)分和兩種情況求弦長,當時,設直線的方程為,與橢圓方程聯(lián)立,得到根與系數(shù)的關系, ,,代入弦長公式,再根據(jù)證明;
(3)由題意可知四邊形的面積是,根據(jù),代入弦長公式可得,再根據(jù)三角函數(shù)求函數(shù)的最小值.
(1)由題意可知,,
解得: ,
橢圓方程是: ;
(2)當時, ,此時,滿足
當時,設直線的斜率為,
設直線的方程為,
由 得
設
, ,
,
,代入上式,
,
綜上可知:.
(3)過右焦點且與直線垂直的直線交橢圓于兩點,
, ,
,
,
當時,的最小值是.
而四邊形的面積是,
四邊形的面積的最小值是.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為,過其右焦點F的直線交橢圓C于M,N兩點,交y軸于E點.若,.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
現(xiàn)從甲班數(shù)學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;
(II)學校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.
下面臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | .024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2=)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
現(xiàn)從甲班數(shù)學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;
(II)學校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.
下面臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2=)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)對某市工薪階層關于“樓市限購令”的態(tài)度進行調查,隨機抽調了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認為“月收入以5500元為分界點對“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) | 月收入低于55百元的人數(shù) | 合計 | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計 | ______________ | ______________ | ______________ |
(2)試求從年收入位于(單位:百元)的區(qū)間段的被調查者中隨機抽取2人,恰有1位是贊成者的概率。
參考公式:,其中.
參考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(, 為常數(shù)),函數(shù)(為自然對數(shù)的底).
(1)討論函數(shù)的極值點的個數(shù);
(2)若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),.
(1)當時,求函數(shù)的極小值;
(2)若當時,關于的方程有且只有一個實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點M到定點F1(-2,0)和F2(2,0)的距離之和為.
(1)求動點M軌跡C的方程;
(2)設N(0,2),過點P(-1,-2)作直線l,交橢圓C于不同于N的A,B兩點,直線NA,NB的斜率分別為k1,k2,問k1+k2是否為定值?若是的求出這個值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com