分析 (Ⅰ)由f(-2)=3,f(-1)=f(1)得$\left\{\begin{array}{l}-2a+b=3\\-a+b=2\end{array}\right.$,解得a,b.
(Ⅱ)1°列表;2°描點;3°連線
解答 解:(Ⅰ)由f(-2)=3,f(-1)=f(1)得$\left\{\begin{array}{l}-2a+b=3\\-a+b=2\end{array}\right.$,
解得a=-1,b=1
所以f(x)=$\left\{\begin{array}{l}-x+1,x<0\\{2^x},x≥0.\end{array}\right.$,
從而f(f(-2))=f(-(-2)+1)=f(3)=23=8;
(Ⅱ)“描點法”作圖:1°列表:
x | -2 | -1 | 0 | 1 | 2 |
f(x) | 3 | 2 | 1 | 2 | 4 |
點評 本題考查了分段函數(shù)的解析式及圖象,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)值由負到正且為增函數(shù) | B. | 函數(shù)值恒為正且為減函數(shù) | ||
C. | 函數(shù)值由正到負且為減函數(shù) | D. | 沒有單調(diào)性 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -4 | C. | -5 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | $\sqrt{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0] | B. | [0,+∞) | C. | [1,+∞) | D. | (-∞,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com