已知定義在上的三個(gè)函數(shù),,,且在處取得極值.
(1)求a的值及函數(shù)的單調(diào)區(qū)間.
(2)求證:當(dāng)時(shí),恒有成立.[來(lái)源
(1),單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.
解析試題分析:解題思路:(1)求導(dǎo)函數(shù),利用求值,再利用導(dǎo)數(shù)求單調(diào)區(qū)間;(2)作差,構(gòu)造函數(shù),求最值,即證明不等式恒成立.規(guī)律總結(jié):(1)求函數(shù)的單調(diào)區(qū)間的步驟:①求導(dǎo)函數(shù);②解;③得到區(qū)間即為所求單調(diào)區(qū)間;(2)證明不等式恒成立問(wèn)題,往往轉(zhuǎn)化為求函數(shù)的最值問(wèn)題.
試題解析:(1),,,
∴.
而,,令得;令 得.∴函數(shù)單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.
(2)∵,∴,∴,
欲證,只需要證明,即證明.
記,∴,
當(dāng)時(shí),,∴在上是增函數(shù),
∴,∴,即,
∴,故結(jié)論成立.
考點(diǎn):1.函數(shù)的單調(diào)區(qū)間;2.不等式恒成立問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若在上恒成立,求所有實(shí)數(shù)的值;
(3)對(duì)任意的,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)用反證法證明:函數(shù)不可能為偶函數(shù);
(2)求證:函數(shù)在上單調(diào)遞減的充要條件是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù).
(1)若在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)若,若函數(shù)在 [1,3]上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某小區(qū)想利用一矩形空地建市民健身廣場(chǎng),設(shè)計(jì)時(shí)決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個(gè)等腰直角三角形,其中,,且中,,經(jīng)測(cè)量得到.為保證安全同時(shí)考慮美觀,健身廣場(chǎng)周圍準(zhǔn)備加設(shè)一個(gè)保護(hù)欄.設(shè)計(jì)時(shí)經(jīng)過(guò)點(diǎn)作一直線交于,從而得到五邊形的市民健身廣場(chǎng),設(shè).
(1)將五邊形的面積表示為的函數(shù);
(2)當(dāng)為何值時(shí),市民健身廣場(chǎng)的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分16分)已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).
(1)證明:是上的偶函數(shù);
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)已知正數(shù)滿足:存在,使得成立,試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)(2011•湖北)設(shè)函數(shù)f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b為常數(shù),已知曲線y=f(x)與y=g(x)在點(diǎn)(2,0)處有相同的切線l.
(Ⅰ) 求a、b的值,并寫(xiě)出切線l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三個(gè)互不相同的實(shí)根0、x1、x2,其中x1<x2,且對(duì)任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com