8.已知函數(shù)$f(x)=\frac{x-1}{x+1}$,x∈[1,3]
(1)判斷函數(shù)的單調(diào)性,并用單調(diào)性的定義證明.
(2)求函數(shù)的最大值和最小值.

分析 (1)根據(jù)函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性即可;(2)判斷出函數(shù)的單調(diào)性求出函數(shù)在閉區(qū)間的最值即可.

解答 解:(1)$f(x)=\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}$.
設(shè)x1,x2是區(qū)間[1,3]上的任意兩個實數(shù),且x1<x2,
則f(x1)-f(x2)=$1-\frac{2}{{{x_1}+1}}-1+\frac{2}{{{x_2}+1}}$
=$\frac{2}{{{x_2}+1}}-\frac{2}{{{x_1}+1}}=\frac{{2({x_1}+1)-2({x_2}+1)}}{{({x_1}+1)({x_2}+1)}}$
=$\frac{{2({x_1}-{x_2})}}{{({x_1}+1)({x_2}+1)}}$.
由1≤x1<x2≤3,得x1-x2<0,(x1+1)(x2+1)>0,
于是f(x1)-f(x2)<0,
即f(x1)<f(x2).
所以,函數(shù)$f(x)=\frac{x-1}{x+1}$是區(qū)間[1,3]上的增函數(shù).
(2)由(1)得:函數(shù)$f(x)=\frac{x-1}{x+1}$在區(qū)間[1,3]的兩個端點處分別取得最小值與最大值,
即在x=1時取得最小值,最小值是0;在x=3時取得最大值,最大值是$\frac{1}{2}$.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查函數(shù)單調(diào)性的證明,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=ex(ax2+x+1).
(1)若a>0,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在x=1處有極值,請證明:對任意$θ∈[{0,\frac{π}{2}}]$時,都有|f(cosθ)-f(sinθ)|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,$AC=BC=\frac{1}{2}A{A_1}=2$,點D是棱AA1的中點.
(Ⅰ)證明:平面BDC1⊥平面BDC;
(Ⅱ)求三棱錐C1-BDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-ax+21n x.
(1)若函數(shù)y=f(x)在定義域上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)設(shè)f(x)有兩個極值點x1,x2,若x1∈(0,$\frac{1}{e}$],且f(x1)≥t+f(x2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知BE∥CF∥DG,AB:BC:CD=1:2;3,CF=12cm,求BE,DG的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.同時拋擲兩枚均勻地骰子,所得點數(shù)之和為8的概率是$\frac{5}{36}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xoy中,已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點F1(-5,0),且點P(0,12)在C1上.
(1)求C1的方程;
(2)若點M到橢圓C1的左焦點與右焦點的距離之比為2:3,求點M的坐標(biāo)(x,y)滿足的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在直角梯形ABCD中,AB∥DC,AD⊥AB,AD=AB=2DC=2,點E、F分別在線段DC、AB上,設(shè)$\overrightarrow{DE}$=λ$\overrightarrow{DC}$,$\overrightarrow{AF}$=λ$\overrightarrow{AB}$,則$\overrightarrow{AE}$•$\overrightarrow{CF}$的最小值為-$\frac{33}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若tan(α+80°)=4sin420°,則tan(α+20°)的值為( 。
A.-$\frac{\sqrt{3}}{5}$B.$\frac{3\sqrt{3}}{5}$C.$\frac{\sqrt{3}}{19}$D.$\frac{\sqrt{3}}{7}$

查看答案和解析>>

同步練習(xí)冊答案