【題目】某市為了了解高二學生物理學習情況,在34所高中里選出5所學校,隨機抽取了近千名學生參加物理考試,將所得數(shù)據(jù)整理后,繪制出頻率分布直方圖如圖所示.

(1)將34所高中隨機編號為01,02,…,34,用下面的隨機數(shù)表選取5組數(shù)抽取參加考試的五所學校,選取方法是從隨機數(shù)表第一行的第6列和第7列數(shù)字開始,由左到右依次選取兩個數(shù)字,則選出來的第4所學校的編號是多少?
49 54 43 54 82 17 37 93 23 78 87 35 20
96 43 84 26 34 91 64 57 24 55 06 88 77
04 74 47 67 21 76 33 50 25 83 92 12 06
(2)求頻率分布直方圖中a的值,試估計全市學生參加物理考試的平均成績;
(3)如果從參加本次考試的同學中隨機選取3名同學,這3名同學中考試成績在80分以上,(含80分)的人數(shù)記為X,求X的分布列及數(shù)學期望.(注:頻率可以視為相應的概率)

【答案】
(1)解:將34所高中隨機編號為01,02,…,34,

用題中所給隨機數(shù)表選取5組數(shù)抽取參加考試的五所學校,選取方法是從隨機數(shù)表第一行的第6列和第7列數(shù)字開始,

由左到右依次選取兩個數(shù)字,則選出來的五所學校依次為:21,32,09,16,17.

∴第4所學校的編號是16.


(2)解:由頻率分布直方圖的性質(zhì)得:

2a+2a+3a+6a+7a=20a,20a×10=1,

解得a=0.005,

估計全市學生參加物理考試的平均成績?yōu)椋?/span>

0.1×55+0.15×65+0.35×75+03×85+0.1×95=76.5


(3)解:從參加考試的同學中隨機抽取1名同學的成績在80分以上的概率為

X可能的取值是0,1,2,3

P(X=0)= ,

P(X=1)= ,

P(X=2)= ,

P(X=3)= ,

∴X的分布列為:

X

0

1

2

3

P

所以E(X)=0× (或X~B(3, ),所以E(X)=np=3× = ).


【解析】(1)由已知條件利用隨機數(shù)法能求出第4所學校的編號.(2)由頻率分布直方圖的性質(zhì)得2a+2a+3a+6a+7a=20a,由此能求出a=0.005,從而能估計全市學生參加物理考試的平均成績.(3)從參加考試的同學中隨機抽取1名同學的成績在80分以上的概率為 ,X可能的取值是0,1,2,3,分別求出相應的概率,由此能求出X的分布列及數(shù)學期望.
【考點精析】通過靈活運用頻率分布直方圖和離散型隨機變量及其分布列,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2ax2+bx+1(e為自然對數(shù)的底數(shù)).
(1)若 ,求函數(shù)F(x)=f(x)ex的單調(diào)區(qū)間;
(2)若b=e﹣1﹣2a,方程f(x)=ex在(0,1)內(nèi)有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且.

(1)確定的解析式;

2)判斷并證明上的單調(diào)性;

3)解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個自然數(shù)若與它的“反序數(shù)”相等,這個自然數(shù)就稱為一個“魔幻數(shù)”如數(shù)“”、“”都是“魔幻數(shù)”在的元素中,去掉所有的“魔幻數(shù)”后,形成一個不含“魔幻數(shù)”的子集,中的元素共有______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當時, .現(xiàn)已畫出函數(shù)軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:

(1)直接寫出函數(shù), 的增區(qū)間;

(2)寫出函數(shù), 的解析式;

(3)若函數(shù), ,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,規(guī)定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低元,根據(jù)市場調(diào)查,銷售商一次訂購不會超過600.

1設(shè)一次訂購件,服裝的實際出廠單價為元,寫出函數(shù)的表達式;

2當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l過點A(0,4),且在兩坐標軸上的截距之和為1.

(Ⅰ)求直線l的方程;

(Ⅱ)若直線l1與直線l平行,且l1l間的距離為2,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在圖中的算法中,如果輸入A=2016,B=98,則輸出的結(jié)果是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,左、右焦點分別為F1F2,且|F1F2|=2,點1, 在橢圓C。

1求橢圓C的方程;

2F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程。

查看答案和解析>>

同步練習冊答案