(本小題16分)

已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中a,b都是大于1的正整數(shù),且

(1)求a的值;

    (2)若對(duì)于任意的,總存在,使得成立,求b的值;

    (3)令,問(wèn)數(shù)列中是否存在連續(xù)三項(xiàng)成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

解:(1)由已知,得.由,得

a,b都為大于1的正整數(shù),故a≥2.又,故b≥3. …………2分

再由,得   

,故,即

b≥3,故,解得.  ………………………4分

于是,根據(jù),可得.……………………6分

(2)由,對(duì)于任意的,均存在,使得,則

,由數(shù)的整除性,得b是5的約數(shù).

b=5.

所以b=5時(shí),存在正自然數(shù)滿足題意.………………………9分

(3)設(shè)數(shù)列中,成等比數(shù)列,由,,得

化簡(jiǎn),得.     (※)  …………………11分

當(dāng)時(shí),時(shí),等式(※)成立,而,不成立. ……………12分

當(dāng)時(shí),時(shí),等式(※)成立.………………………………………13分

當(dāng)時(shí),,這與b≥3矛盾.

這時(shí)等式(※)不成立.…………………………………………14分

綜上所述,當(dāng)時(shí),不存在連續(xù)三項(xiàng)成等比數(shù)列;當(dāng)時(shí),數(shù)列中的第二、三、四項(xiàng)成等比數(shù)列,這三項(xiàng)依次是18,30,50.……………………16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題16分)

已知函數(shù)).

(1)求函數(shù)的值域;

(2)①判斷函數(shù)的奇偶性;②用定義判斷函數(shù)的單調(diào)性;

(3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題16分)

已知函數(shù)).

(1)求函數(shù)的值域;

(2)①判斷函數(shù)的奇偶性;②用定義判斷函數(shù)的單調(diào)性;

(3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題16分)

已知是定義在上的偶函數(shù),且時(shí),

(1)求,

(2)求函數(shù)的表達(dá)式;

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省揚(yáng)州市高三第四次模擬考試數(shù)學(xué)試題 題型:解答題

(本小題16分)

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸為軸,焦點(diǎn)在直線上,直線與拋物線相交于兩點(diǎn),為拋物線上一動(dòng)點(diǎn)(不同于),直線分別交該拋物線的準(zhǔn)線于點(diǎn)。

(1)求拋物線方程;

(2)求證:以為直徑的圓經(jīng)過(guò)焦點(diǎn),且當(dāng)為拋物線的頂點(diǎn)時(shí),圓與直線相切。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一第一學(xué)期期末測(cè)試數(shù)學(xué)試卷 題型:解答題

(本小題16分)

已知△OAB的頂點(diǎn)坐標(biāo)為,,, 點(diǎn)P的橫坐標(biāo)為14,且,點(diǎn)是邊上一點(diǎn),且.

(1)求實(shí)數(shù)的值與點(diǎn)的坐標(biāo);

(2)求點(diǎn)的坐標(biāo);

(3)若為線段上的一個(gè)動(dòng)點(diǎn),試求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案