【題目】上世紀(jì)八十年代初, 鄧小平同志曾指出“在人才的問(wèn)題上,要特別強(qiáng)調(diào)一下,必須打破常規(guī)去發(fā)現(xiàn)、選拔和培養(yǎng)杰出的人才”. 據(jù)此,經(jīng)省教育廳批準(zhǔn),某中學(xué)領(lǐng)導(dǎo)審時(shí)度勢(shì),果斷作出于1985年開(kāi)始施行超常實(shí)驗(yàn)班教學(xué)試驗(yàn)的決定.一時(shí)間,學(xué)生興奮,教師欣喜,家長(zhǎng)歡呼,社會(huì)熱議.該中學(xué)實(shí)驗(yàn)班一路走來(lái),可謂風(fēng)光無(wú)限,碩果累累,尤其值得一提的是,1990年,全國(guó)共招收150名少年大學(xué)生,該中學(xué)就有19名實(shí)驗(yàn)班學(xué)生被錄取,占全國(guó)的十分之一,轟動(dòng)海內(nèi)外.設(shè)該中學(xué)超常實(shí)驗(yàn)班學(xué)生第x年被錄取少年大學(xué)生的人數(shù)為y.
左下表為該中學(xué)連續(xù)5年實(shí)驗(yàn)班學(xué)生被錄取少年大學(xué)生人數(shù),求y關(guān)于x的線性回歸方程,并估計(jì)第6年該中學(xué)超常實(shí)驗(yàn)班學(xué)生被錄取少年大學(xué)生人數(shù);
年份序號(hào)x | 1 | 2 | 3 | 4 | 5 |
錄取人數(shù)y | 10 | 11 | 14 | 16 | 19 |
附1:
下表是從該校已經(jīng)畢業(yè)的100名高中生錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育得到
2×2列聯(lián)表,完成上表,并回答:是否有95%以上的把握認(rèn)為“錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育有關(guān)系”.
附2:
接受超常實(shí)驗(yàn)班教育 | 未接受超常實(shí)驗(yàn)班教育 | 合計(jì) | |
錄取少年大學(xué)生 | 60 | 80 | |
未錄取少年大學(xué)生 | 10 | ||
合計(jì) | 30 | 100 |
0.50 | 0.40 | 0.10 | 005 | |
0.455 | 0.708 | 2.706 | 3.841 |
【答案】(1)21(2)有95%的把握
【解析】試題分析:(1)將數(shù)據(jù)代入回歸直線方程的計(jì)算公式,先求出,再求出,由此得到回歸直線方程,將代入回歸直線方程,即可求得預(yù)測(cè)值.(2)將聯(lián)表填寫(xiě)哈,代入的計(jì)算公式,計(jì)算得,故我們有95%的把握認(rèn)為“錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育有關(guān)系”.
試題解析:
(1)由已知中數(shù)據(jù)可得:
當(dāng)時(shí)
即第6年該校實(shí)驗(yàn)班學(xué)生錄取少年大學(xué)生人數(shù)約為21人;
(2)該校已經(jīng)畢業(yè)的100名高中生錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育得到2×2列聯(lián)表:
接受超常實(shí)驗(yàn)班教育 | 未接受超常實(shí)驗(yàn)班教育 | 合計(jì) | |
錄取少年大學(xué)生 | 60 | 20 | 80 |
未錄取少年大學(xué)生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
根據(jù)列聯(lián)表中的數(shù)據(jù),得到的觀測(cè)值為
故我們有95%的把握認(rèn)為“錄取少年大學(xué)生人數(shù)與是否接受超常實(shí)驗(yàn)班教育有關(guān)系”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=sin2x+2cosx( )的最大值與最小值分別為( )
A.最大值 ,最小值為﹣
B.最大值為 ,最小值為﹣2
C.最大值為2,最小值為﹣
D.最大值為2,最小值為﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體中,平面平面,四邊形為菱形,且, , ∥, 為中點(diǎn).
(Ⅰ)求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在棱上是否存在點(diǎn),使 ? 若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), = .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn).
(1)求滿足條件的最小正整數(shù)的值;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號(hào)分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號(hào)分別為1,2.
(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率;
(2)現(xiàn)袋中再放入一張標(biāo)號(hào)為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)原點(diǎn)的動(dòng)直線l與圓相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)M的軌跡C的方程;
(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用n種不同的顏色為下列兩塊廣告牌著色,(如圖甲、乙),要求在A,B,C,D四個(gè)區(qū)域中相鄰(有公共邊界)的區(qū)域不用同一顏色.
(1)若n=6,則為甲圖著色時(shí)共有多少種不同的方法;
(2)若為乙圖著色時(shí)共有120種不同方法,求n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,A、B、C的對(duì)邊分別為a,b,c,面積為S,滿足S= (a2+b2﹣c2).
(1)求C的值;
(2)若a+b=4,求周長(zhǎng)的范圍與面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A、B、C的對(duì)邊分別為a,b,c.角A,B,C成等差數(shù)列.
(1)求cosB的值;
(2)邊a,b,c成等比數(shù)列,求sinAsinC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com