P是雙曲線右支上的一點,M,N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點,則|PM|-|PN|的最大值為( )
A.6B.7C.8D.9
D

試題分析:設雙曲線的兩個焦點分別是F1(-5,0)與F2(5,0),則這兩點正好是兩圓的圓心,當且僅當點P與M、F1三點共線以及P與N、F2三點共線時所求的值最大,此時|PM|-|PN|=(|PF1|+2)-(|PF2|-1)=6+3=9.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

P為圓A:上的動點,點.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當點P在第一象限,且時,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

平面內(nèi)與兩定點、)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上、兩點所成的曲線C可以是圓、橢圓或雙曲線.求曲線C的方程,并討論C的形狀與m值得關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓+=1的兩個焦點是F1、F2,點P在該橢圓上,若|PF1|-|PF2|=2,則△PF1F2的面積是    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果方程表示雙曲線,那么下列橢圓中,與這個雙曲線共焦點的是( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點,線段AB的垂直平分線與x軸相交于點P(t,0),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓+=1(a>b>0)的右頂點為A(1,0),過其焦點且垂直長軸的弦長為1,則橢圓方程為       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓(x+2)2+y2=36的圓心為M,設A為圓上任一點,N(2,0),線段AN的垂直平分線交MA于點P,則動點P的軌跡是(  )
A.圓B.橢圓
C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與橢圓C:=1共焦點且過點(1,)的雙曲線的標準方程為(  )
A.x2=1B.y2-2x2=1
C.=1D.-x2=1

查看答案和解析>>

同步練習冊答案