函數(shù)y=3sin(2x+
π
6
)
的單調(diào)遞減區(qū)間( 。
分析:利用y=sinx的單調(diào)性,求出函數(shù)的單調(diào)遞減區(qū)間,進而可求函數(shù)y=3sin(2x+
π
6
)
的單調(diào)遞減區(qū)間.
解答:解:利用y=sinx的單調(diào)遞減區(qū)間,可得
π
2
+2kπ≤2x+
π
6
2
+2kπ

kπ+
π
6
≤x≤kπ+
3

∴函數(shù)y=3sin(2x+
π
6
)
的單調(diào)遞減區(qū)間[kπ+
π
6
,kπ+
3
]
(k∈Z)
故選D.
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,關(guān)鍵是利用正弦函數(shù)的單調(diào)性,整體思考,考查計算能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=3sin(
1
2
x-
π
4
).
(1)用“五點法”作函數(shù)的圖象;
(2)求此函數(shù)的最小正周期、對稱軸、對稱中心、單調(diào)遞增區(qū)間.
(3)說出此圖象是由y=sinx的圖象經(jīng)過怎樣的變化得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=3sin(2x+φ)的圖象關(guān)于點(
3
,0)成中心對稱,那么|φ|的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=Asin(ωx+φ)(A>0,ω>0)的周期為1,最大值與最小值的差是3,且函數(shù)的圖象過點(
1
8
3
4
)
,則函數(shù)表達式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題正確的是
(1)(2)(3)
(1)(2)(3)

(1)把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
個單位得到y(tǒng)=3sin2x的圖象.
(2)若等差數(shù)列的前n項和為Sn則三點((10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共線
(3)若f(x)=cos4x-sin4x則f′(
π
12
)=-1

(4)若三次函數(shù)f(x)=ax3+bx2+cx+d則“a+b+c=0”是f(x)有極值點的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3sin(2x+
π
3
).
(1)用“五點法”畫函數(shù)y=3sin(2x+
π
3
),x∈[-
π
6
6
]的圖象.(只需列表即可,不用描點連線)
(2)求函數(shù)f(x)=3sin(2x+
π
3
)在x∈[-π,π]的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案