已知直線的斜率為,直線經(jīng)過(guò)點(diǎn),且,則實(shí)數(shù) 的值為    ▲   

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省牡丹江一中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044

已知橢圓的中心在原點(diǎn),焦點(diǎn)為F1(0,-2),F(xiàn)2(0,),且離心率

(1)求橢圓的方程;

(2)直線l(與坐標(biāo)軸不平行)與橢圓交于不同的兩點(diǎn)A、B,且線段AB中點(diǎn)的橫坐標(biāo)為,求:直l線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省高三年級(jí)第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓:)上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為,左、右焦點(diǎn)分別為,點(diǎn)是右準(zhǔn)線上任意一點(diǎn),過(guò)作直  線的垂線交橢圓于點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)證明:直線與直線的斜率之積是定值;

(3)點(diǎn)的縱坐標(biāo)為3,過(guò)作動(dòng)直線與橢圓交于兩個(gè)不同點(diǎn),在線段上取點(diǎn),滿足,試證明點(diǎn)恒在一定直線上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建福州市畢業(yè)班質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:的離心率為

直線:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長(zhǎng)為直

徑的圓相切.

 (Ⅰ)求橢圓C的方程;

(Ⅱ)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn).設(shè)直線的斜率,在軸上是否存在點(diǎn),使得是以GH為底邊的等腰三角形. 如果存在,求出實(shí)數(shù)的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線

于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)當(dāng)P不在軸上時(shí),在曲線上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱(chēng),若存在,

求出的斜率范圍,若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省皖南八校高三第一次聯(lián)考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)已知橢圓過(guò)點(diǎn)A(a,0),B(0,b)的直

 

線傾斜角為,原點(diǎn)到該直線的距離為.

 

(1)求橢圓的方程;

(2)斜率小于零的直線過(guò)點(diǎn)D(1,0)與橢圓交于M,N兩點(diǎn),若求直線MN的方程;

(3)是否存在實(shí)數(shù)k,使直線交橢圓于P、Q兩點(diǎn),以PQ為直徑的圓過(guò)點(diǎn)D(1,0)?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案