如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓
C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中點(diǎn)M在直線l上,線段AB的中垂線與C交于P,Q兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn)M,使以PQ為直徑的圓經(jīng)過點(diǎn)F2,若存在,求出M點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

(1)  (2)

解析試題分析:解:(Ⅰ) 設(shè)F2(c,0),則,所以c=1.因?yàn)殡x心率e=,所以a=
所以橢圓C的方程為.   4分
(Ⅱ) 當(dāng)直線AB垂直于x軸時(shí),直線AB方程為x=-, 6分
此時(shí)P(,0)、Q(,0) ,.不合;
當(dāng)直線AB不垂直于x軸時(shí),設(shè)存在點(diǎn)M(-,m) (m≠0),直線AB的斜率為k, ,
.由  得,則 -1+4mk=0,
故k=.此時(shí),直線PQ斜率為,PQ的直線方程為
即 
聯(lián)立消去y,整理得  
所以,. 8分
由題意0,于是
(x1-1)(x2-1)+y1y2
                      =0.
因?yàn)镸在橢圓內(nèi),符合條件; 12分
綜上,存在兩點(diǎn)M符合條件,坐標(biāo)為. 13分
考點(diǎn):橢圓的方程,直線與橢圓的位置關(guān)系
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于直線與圓錐曲線的位置關(guān)系的運(yùn)用,要借助于代數(shù)方法聯(lián)立方程組來的得到,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn), 是一個(gè)動(dòng)點(diǎn), 且直線、的斜率之積為.
(1) 求動(dòng)點(diǎn)的軌跡的方程;
(2) 設(shè), 過點(diǎn)的直線、兩點(diǎn), 若對(duì)滿足條件的任意直線, 不等式恒成立, 求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓()過點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過定點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為
(Ⅰ)寫出的方程;
(Ⅱ)設(shè)直線交于兩點(diǎn).k為何值時(shí)?此時(shí)的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸長是短軸長的兩倍,焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)不過原點(diǎn)的直線與橢圓交于兩點(diǎn),且直線、、的斜率依次成等比數(shù)列,求△面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為 , 在軸負(fù)半軸上有一點(diǎn),且

(1)若過三點(diǎn)的圓 恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線過定點(diǎn),動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)直線交于兩點(diǎn),以為切點(diǎn)分別作的切線,兩切線交于點(diǎn).
①求證:;②若直線交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的離心率且點(diǎn)在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;

查看答案和解析>>

同步練習(xí)冊(cè)答案