已知函數(shù)
(x≠0)各項(xiàng)均為正數(shù)的數(shù)列{a
n}中a
1=1,
,
。(1)求數(shù)列{a
n}的通項(xiàng)公式;(2)在數(shù)列{b
n}中,對任意的正整數(shù)n,b
n·
都成立,設(shè)S
n為數(shù)列{b
n}的前n項(xiàng)和試比較S
n與
的大小。
(1)由題意知
∴
是以1為首項(xiàng)4為公差的等差數(shù)列
∴
∴
∴
---------------------6分
(2)
∴
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知數(shù)列
是公差為2的等差數(shù)列,且
,
,
成等比數(shù)列.
(1)求
的通項(xiàng)公式;
(2)令
,記數(shù)列
的前
項(xiàng)和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知數(shù)列{
}為公差不為零的等差數(shù)列,
=1,各項(xiàng)均為正數(shù)的等比數(shù)列{
}的第1
項(xiàng)、第3項(xiàng)、第5項(xiàng)分別是
、
、
.
(I
)求數(shù)列{
}與{
}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
}的前
項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分16分)
對于數(shù)列
,如果存在一個正整數(shù)
,使得對任意的
(
)都有
成立,那么就把這樣一類數(shù)列
稱作周期為
的周期數(shù)列,
的最小值稱作數(shù)列
的最小正周期,以下簡稱周期.例如當(dāng)
時
是周期為
的周期數(shù)列,當(dāng)
時
是周期為
的周期數(shù)列.
(1)設(shè)數(shù)列
滿足
(
),
(
不同時為0),求證:數(shù)列
是周期為
的周期數(shù)列,并求數(shù)列
的前2012項(xiàng)的和
;
(2)設(shè)數(shù)列
的前
項(xiàng)和為
,且
.
①若
,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
②若
,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
(3)設(shè)數(shù)列
滿足
(
),
,
,數(shù)列
的前
項(xiàng)和為
,試問是否存在實(shí)數(shù)
,使對任意的
都有
成立,若存在,求出
的取值范圍
;不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)等差數(shù)列
的前n項(xiàng)和為
,若
,求
的值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)等差數(shù)列
的前
項(xiàng)和為
,若
則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
數(shù)列{
an}的首項(xiàng)為3,{
bn}為等差數(shù)列且
bn=
an+1-
an(
n∈N
*),若
b3=-2,
b10=12,則
a8=( )
查看答案和解析>>