給出下列四個命題:
①“向量,的夾角為銳角”的充要條件是“>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有f()>;
③設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“密切函數(shù)”,區(qū)間[a,b]稱為“密切區(qū)間”.若f(x)=x2-3x+4與g(x)=2x-3在[a,b]上是“密切函數(shù)”,則其“密切區(qū)間”可以是[2,3];
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是    .(請寫出所有真命題的序號)
【答案】分析:根據(jù)平面向量數(shù)量積的定義,可以判斷①的真假;根據(jù)根據(jù)函數(shù)凸凹性,可以判斷②的真假;根據(jù)二次函數(shù)的性質(zhì)及絕對值的運算法則,可以判斷③的真假;根據(jù)函數(shù)圖象的變換法則,我們可以得到④的真假;進(jìn)而得到答案.
解答:解:“>0”還包括同向(此時向量,的夾角為0)的情況,故①錯誤;
由于函數(shù)f(x)=lgx,在區(qū)間(0,+∞)上是凸增的,故對任意的x1、x2∈(0,+∞),且x1≠x2,都有f()>,故②正確;
當(dāng)f(x)=x2-3x+4與g(x)=2x-3時,|f(x)-g(x)|=|x2-5x+7|,∵在區(qū)間[2,3]上|x2-5x+7|∈[0,1],故③正確;
先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,可以得到y(tǒng)=f′(-x-1)的圖象,故④錯誤
故答案為:②③
點評:本題考查的知識點是數(shù)量積表示兩個向量的夾角,函數(shù)的圖象的變換,函數(shù)的值域,及對數(shù)函數(shù)的圖象及性質(zhì),其中熟練掌握初等基本函數(shù)的圖象與性質(zhì)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案